Search results for "Lie algebra"
showing 10 items of 134 documents
Identities of PI-Algebras Graded by a Finite Abelian Group
2011
We consider associative PI-algebras over an algebraically closed field of zero characteristic graded by a finite abelian group G. It is proved that in this case the ideal of graded identities of a G-graded finitely generated PI-algebra coincides with the ideal of graded identities of some finite dimensional G-graded algebra. This implies that the ideal of G-graded identities of any (not necessary finitely generated) G-graded PI-algebra coincides with the ideal of G-graded identities of the Grassmann envelope of a finite dimensional (G × ℤ2)-graded algebra, and is finitely generated as GT-ideal. Similar results take place for ideals of identities with automorphisms.
A restriction on the schur multiplier of nilpotent lie algebras
2011
An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maximal dimension. This allows precision on the size of M(L). Among other results, applications to the non-abelian tensor square L ⊗ L are illustrated.
Group algebras and Lie nilpotence
2013
Abstract Let ⁎ be an involution of a group algebra FG induced by an involution of the group G. For char F ≠ 2 , we classify the groups G with no 2-elements and with no nonabelian dihedral groups involved whose Lie algebra of ⁎-skew elements is nilpotent.
Group algebras of torsion groups and Lie nilpotence
2010
Letbe an involution of a group algebra FG induced by an involution of the group G. For char F 0 2, we classify the torsion groups G with no elements of order 2 whose Lie al- gebra of � -skew elements is nilpotent.
Irreducible Finitary Lie Algebras over Fields of Characteristic Zero
1998
Abstract A Lie subalgebraLof g l K (V) is said to befinitaryif it consists of elements of finite rank. We show that if Char K = 0, if dim K Vis infinite, and ifLacts irreducibly onV, then the derived algebra ofLis simple.
Serial subalgebras of finitary Lie algebras
2000
A Lie subalgebra L of glK(V ) is said to be finitary if it consists of elements of finite rank. We show that, if L acts irreducibly on V , and if V is infinite-dimensional, then every non-trivial ascendant Lie subalgebra of L acts irreducibly on V too. When CharK 6= 2, it follows that the locally solvable radical of such L is trivial. In general, locally solvable finitary Lie algebras over fields of characteristic 6= 2 are hyperabelian.
Nilpotent Lie algebras with 2-dimensional commutator ideals
2011
Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .
Multialternating graded polynomials and growth of polynomial identities
2012
Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily large degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.
Geometric properties of involutive distributions on graded manifolds
1997
AbstractA proof of the relative version of Frobenius theorem for a graded submersion, which includes a very short proof of the standard graded Frobenius theorem is given. Involutive distributions are then used to characterize split graded manifolds over an orientable base, and split graded manifolds whose Batchelor bundle has a trivial direct summand. Applications to graded Lie groups are given.
A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms
2017
Abstract The realification of the ( 2 n + 1 ) -dimensional complex Heisenberg Lie algebra is a ( 4 n + 2 ) -dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the centre, and admitting the compact algebra sp ( n ) of derivations. We investigate, in general, whether a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic results, with the expressed aim of attracting the interest of a broader audience.