Search results for "Linder"
showing 10 items of 178 documents
Analytical induced force solution in conducting cylindrical bodies and rings due to a rotating finite permanent magnet
2020
Abstract Using exact expression of the magnetic field we derive analytical expression for the induced current density and volume force in a solid conducting cylinder and ring due to a coaxial rotating finite permanent magnet with transverse magnetization. The integral torque is calculated from these expressions and validated with numerical and experimental results. Conditions for useful magnetic field approximations are found.
Controversy over the Mode of Growth of Cambial Cylinder
2021
Based on mathematical modelling, this review article describes the mechanism of expansion in the circumference of vascular cambium due to radial growth leading to increase in the tree-trunk diameter, and emphasizes upon the huge difference in the rate of symplastic growth of cambial initials in two different directions, viz. radial and circumferential. On the basis of anatomical evidence regarding the role of symplastic and intrusive growths, the long-standing hypothesis that the intrusive growth contributes to the increase of cambium circumference has been falsified. It has been shown with the help of mathematical calculations as well as anatomical observations that only symplastic growth …
Adaptive Feedforward Control of a Pressure Compensated Differential Cylinder
2020
This paper presents the design, simulation and experimental verification of adaptive feedforward motion control for a hydraulic differential cylinder. The proposed solution is implemented on a hydraulic loader crane. Based on common adaptation methods, a typical electro-hydraulic motion control system has been extended with a novel adaptive feedforward controller that has two separate feedforward states, i.e, one for each direction of motion. Simulations show convergence of the feedforward states, as well as 23% reduction in root mean square (RMS) cylinder position error compared to a fixed gain feedforward controller. The experiments show an even more pronounced advantage of the proposed c…
Minimal-model for robust control design of large-scale hydraulic machines
2018
Hydraulic machines are in use where the large forces, at relatively low velocities, are required by varying loads and often hazardous and hard-to-reach environments, like e.g. offshore, mining, forestry, cargo logistics, and others industries. Cranes and excavators equipped with multiple hydraulic cylinders are typical examples for that. For design of the robust feedback controls of hydraulic cylinders, already installed into large-scale machines, there is a general lack of reliable dynamic models. Also the suitable and feasible identification techniques, especially in frequency domain, yield limited. This paper proposes a minimal-modeling approach for determining the most relevant open-lo…
Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder
2020
This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…
A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability
2019
Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, c…
Classification and Review of Pump-Controlled Differential Cylinder Drives
2019
Pump-controlled hydraulic cylinder drives may offer improved energy efficiency, compactness, and plug-and-play installation compared to conventional valve-controlled hydraulic systems and thus have the potential of replacing conventional hydraulic systems as well as electro-mechanical alternatives. Since the late 1980s, research into how to configure the hydraulic circuit of pump-controlled cylinder drives has been ongoing, especially in terms of compensating the uneven flow requirements required by a differential cylinder. Recently, research has also focused on other aspects such as replacing a vented oil tank with a small-volume pressurized accumulator including the consequences of this i…
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency
2019
This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo
A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 1: Motion Control
2019
This research paper presents the first part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled actuation system that is typically used in load-carrying applications. The study is carried out on a single-boom crane with focus on the control design and motion performance analysis. First, a model-based design approach is carried out to derive the control parameters for both actuation systems using experimentally validated models. The linear analysis shows that the new drive system has higher gain margin, allowing a considerably more aggressive closed-loop position controller. Several b…
Novel concept for stabilising a hydraulic circuit containing counterbalance valve and pressure compensated flow supply
2016
In this paper, a novel concept for stabilising a hydraulic system containing a counterbalance valve and a pressure compensated flow supply is presented. The concept utilizes a secondary circuit where a low-pass filtered value of the load pressure is generated and fed back to the compensator of the flow supply valve. The novel concept has been investigated theoretically and experimentally. A linear model has been developed to verify the improved stability conditions. The novel concept has been implemented on a single boom actuated by a cylinder. The results show that the pressure oscillations in an otherwise unstable system can be suppressed with the novel concept. This happens without any c…