Search results for "Lithography"
showing 10 items of 242 documents
Bloch Modes Coupling in Photonic Crystal Waveguides
2005
We investigate the properties of Bloch modes inside a photonic crystal waveguide. By using simultaneously a near field optical microscope and a transmittance setup, we demonstrate that Bloch modes having different parity are coupled.
Resist-based silver nanocomposites synthesized by lithographic methods
2010
In this work, the formation of silver metal nanoparticles inside a negative-tone resist based on poly(vinyl alcohol) is achieved by electron beam lithography. The chemistry of this sensitive resist allows the production of nanoparticles as well as the polymer crosslinking by the electron radiation. Due to the presence of the silver nanoparticles, the final composite exhibits a plasmonic behavior, which was characterized by measuring the absorbance. The lithographic properties of the resist have been characterized. The technique has also been exported to UV lithography, where silver nanoparticles are obtained inside the polymeric patterns after optical lithography.
Ultrathin high-index metasurfaces for shaping focused beams
2015
The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy. Spanish Ministry of Economy and Competitiveness (MEC) (TEC2013-50416-EXP).
Applicability of a binary amplitude mask for creating correctors of higher-order ocular aberrations in a photoresistive layer
2012
Ocular aberrations can be corrected with wavefront correctors created in a photoresist layer. The simplest type of the mask used in optical lithography is a binary amplitude mask. It is known that such a mask has a periodic hole pattern. The purpose of this research was to assess applicability of a binary amplitude mask for creating ocular wavefront correctors. The photoresist was applied to the substrate by using the dip-coating method. The photoresist layer was illuminated through a mask printed on a transparent film by using a laser printer. The surface of the wavefront correctors was evaluated by aberrometry, scanning electron microscopy and profilometry method. The dip-coating method c…
Numerical study of photolithography system: electromagnetic differential method
2004
The R-matrix propagation algorithm is incorporated into the differential method to achieve an extended capability for modelling a photolithography systems. We show throughout this work the ability of the R-matrix algorithm and differential method to analyse gratings of arbitrary depth, profile, and conductivity without encountering numerical instabilities. We calculate the field intensity and the transmitted amplitudes in the 0 and −1 orders below different masks. We study also the influence of the various parameters (incidence, groove spacing, groove depth and index of refraction) on the field intensity maps and the transmittivity power. These results agree with the experimental patent: we…
Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds
2018
We report a novel multi-step method for the preparation of ordered mesoporous titania scaffolds and show an illustrative example of their application to solar cells. The method is based on (monolayer) colloidal nanosphere lithography that makes use of polystyrene nanoparticles organised at a water–air interface and subsequently transferred onto a solid substrate. A titania precursor solution (titanium(IV) isopropoxide in ethanol) is then drop-cast onto the monolayer and left to “incubate” overnight. Surprisingly, instead of the expected inverse monolayer-structure, a subsequent calcination step of the precursor yields an ordered monolayer of hollow titania nanospheres with a wall thickness …
Fabrication and characterisation of ZnO nanostructures: from nanoscale building blocks to hybrid nanomaterials - towards emerging technologies in sen…
2012
Metal oxide nanostructures characterized by multiple morphologies and structures are at the forefront of applications driven nanotechnology research. In particular, they represent a versatile solution for performance enhancement and applications in multifunctional devices and offer distinct advantages over their bulk counterparts. The current state in ZnO nanomaterials research and its impact in nanotechnology and modern engineering are discussed through the lens of con-tinuing technological advances in synthetic techniques allowing to obtain the material with predefined specific set of criteria including size, functionality, and uniqueness. Aim of this research activity is fabrication and …
Analysis of the angular acceptance of surface plasmon Bragg mirrors
2007
International audience; We analyze an important aspect of the behavior of surface plasmon polariton (SPP) Bragg mirrors: the dependence of the angular acceptance for reflection on the incidence angle. By means of leakage radiation microscopy, both in direct and Fourier space, we observe that the angular acceptance diminishes for increasing incidence angles. This effect, which can considerably affect the design of devices based on these elements, is shown to be the consequence of the decrease of the bandgap width with increasing incidence angle. (c) 2007 Optical Society of America.
On the Schwarzschild Effect in 3D Two‐Photon Laser Lithography
2019
International audience; The two‐photon Schwarzschild effect in photoresists suitable for 3D laser lithography is revisited. The study ranges over seven orders of magnitude in exposure time (from 1 µs to 10 s) and investigates a wide variety of different photoresist compositions. For short exposure times (“regime I”), the laser power at the polymerization threshold can scale with the inverse square root of the exposure time, as naively to be expected for two‐photon absorption. Substantial deviations occur, however, for low photoinitiator concentrations. For intermediate exposure times (“regime II”), a Schwarzschild‐type of behavior is found, as discussed previously. For very long exposure ti…
Influence of MeV H+ ion beam flux on cross-linking and blister formation in PMMA resist
2012
In soft lithography, a pattern is produced in poly(dimethylsiloxane) (PDMS) elastomer by casting from a master mould. The mould can be made of poly(methylmethacrylate) (PMMA) resist by utilising either its positive or negative tone induced by an ion beam. Here we have investigated the irradiation conditions for achieving complete cross-linking and absence of blister formation in PMMA so that its negative characteristic can be used in making master moulds. PMMA thin films approximately 9 µm thick on Si were deposited by spin coating. The 2-MeV H+ ion beam was generated using a 1.7-MV tandem Tandetron accelerator. The beam was collimated to a 500×500 µm2 cross section using programmable proxi…