Search results for "Lyapunov exponent"
showing 10 items of 55 documents
Intermittent-Type Chaos in Nonsinusoidal Driven Oscillators
2000
The intermittent-type chaos occurring in rf- and dc- nonsinusoidal driven oscillators is investigated analytically and numerically. The attention is focused on a general class of oscillators in which the total potential VRP(,r) is the Remoissenet-Peyrard potential which has constant amplitude and is 2π-periodic in , and whose shape can be varied as a function of parameter r ( |r| < 1). A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. The parameter regions of chaotic behaviour predicted by the theore…
Chaotic Cyclotron and Hall Trajectories Due to Spin-Orbit Coupling
2020
We demonstrate that the synergistic effect of a gauge field, Rashba spin-orbit coupling (SOC), and Zeeman splitting can generate chaotic cyclotron and Hall trajectories of particles. The physical origin of the chaotic behavior is that the SOC produces a spin-dependent (so-called anomalous) contribution to the particle velocity and the presence of Zeeman field reduces the number of integrals of motion. By using analytical and numerical arguments, we study the conditions of chaos emergence and report the dynamics both in the regular and chaotic regimes. {We observe the critical dependence of the dynamic patterns (such as the chaotic regime onset) on small variations in the initial conditions …
Linear inverse filtering improves spatial separation of nonlinear brain dynamics: a simulation study.
2000
We examined topographic variations in nonlinear measures based on scalp voltages, which were generated by two simulated current dipoles each placed in a different hemisphere of a spherical volume conductor (three-shell model). Dipole dynamics were that of a three-torus and the x-component of the Lorenz-system and scalp voltage were calculated for a configuration of 29 electrode positions. Although estimates for correlation dimension D2 and Lyapunov exponent L1 were close to the theoretical values for the original time series, the simulated scalp voltage data showed almost no topographic resolution of dipole positions. In order to enhance topographic differentiation, we constructed linear in…
Rich dynamics and anticontrol of extinction in a prey-predator system
2019
This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system orbits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete sys…
Chaotic Antiferromagnetic Nano-Oscillator driven by Spin-Torque
2021
We theoretically describe the behavior of a terahertz nano-oscillator based on an anisotropic antiferromagnetic dynamical element driven by spin torque. We consider the situation when the polarization of the spin-current is perpendicular to the external magnetic field applied along the anisotropy easy-axis. We determine the domain of the parametric space (field, current) where the oscillator demonstrates chaotic dynamics. Characteristics of the chaotic regimes are analyzed using conventional techniques such as spectra of the Lyapunov exponents. We show that the threshold current of the chaos appearance is particularly low in the vicinity of the spin-flop transition. In this regime, we consi…
A criterion for zero averages and full support of ergodic measures
2018
International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the s…
Integrability via Reversibility
2017
Abstract A class of left-invariant second order reversible systems with functional parameter is introduced which exhibits the phenomenon of robust integrability: an open and dense subset of the phase space is filled with invariant tori carrying quasi-periodic motions, and this behavior persists under perturbations within the class. Real-analytic volume preserving systems are found in this class which have positive Lyapunov exponents on an open subset, and the complement filled with invariant tori.
Periodic measures and partially hyperbolic homoclinic classes
2019
In this paper, we give a precise meaning to the following fact, and we prove it: $C^1$-open and densely, all the non-hyperbolic ergodic measures generated by a robust cycle are approximated by periodic measures. We apply our technique to the global setting of partially hyperbolic diffeomorphisms with one dimensional center. When both strong stable and unstable foliations are minimal, we get that the closure of the set of ergodic measures is the union of two convex sets corresponding to the two possible $s$-indices; these two convex sets intersect along the closure of the set of non-hyperbolic ergodic measures. That is the case for robustly transitive perturbation of the time one map of a tr…
Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems
2000
We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently…
Visualization of Parameter Sensitivity of 2D Time-Dependent Flow
2018
In this paper, we present an approach to analyze 1D parameter spaces of time-dependent flow simulation ensembles. By extending the concept of the finite-time Lyapunov exponent to the ensemble domain, i.e., to the parameter that gives rise to the ensemble, we obtain a tool for quantitative analysis of parameter sensitivity both in space and time. We exemplify our approach using 2D synthetic examples and computational fluid dynamics ensembles.