Search results for "MICROTUBULES"

showing 10 items of 71 documents

Studies on the subcellular pathophysiology of sublethal chronic cell injury.

1974

Summary This paper summarizes some of the important subcellular events occurring after chronic sublethal cell injury. Chronic cell injury is defined as the result of injurious stimuli which permit cell survival though in altered steady states for protracted periods of time. The importance of ultrastructural and biochemical studies of these phenomena is emphasized. Among the phenomena discussed are alterations in lysosomes, cellular hypertrophy, fatty metamorphosis, alterations in microfilaments and microtubules, alterations in mechanisms of transcription and replication, disturbances in the cell surface and transport across the cell membrane, and alterations in intracellular transport.

AdultMaleTime FactorsTranscription GeneticSurface PropertiesCellsCellGuinea PigsBronchiBiologyMicrofilamentMicrotubulesPathology and Forensic MedicineMuscle hypertrophyCell Physiological PhenomenaCell membraneMiceMicrotubuleTranscription (biology)medicineAnimalsHumansCerebral CortexMacrophagesMusclesCell MembraneBiological TransportGeneral MedicineHypertrophyMiddle AgedPathophysiologyCell biologyMicroscopy Electronmedicine.anatomical_structureLiverUltrastructureRabbitsLysosomesCell DivisionBeitrage zur Pathologie
researchProduct

The New Microtubule-Targeting Agent SIX2G Induces Immunogenic Cell Death in Multiple Myeloma

2022

Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CAL…

Antineoplastic AgentsPemetrexedIsoindolesMicrotubulescancer treatmentCatalysisInorganic ChemistryAdenosine TriphosphateCell Line Tumorimmunogenic cell deathHumansPhysical and Theoretical ChemistryOxazolesVinca AlkaloidsMolecular BiologySpectroscopyOrganic ChemistryICD inducersGeneral MedicineComputer Science Applicationsmultiple myelomaMTAscancer treatment; immunogenic cell death; ICD inducers; MTAs; multiple myelomaTaxoidsCalreticulinColchicineInternational Journal of Molecular Sciences
researchProduct

Experimental virus evolution reveals a role of plant microtubule dynamics and TORTIFOLIA1/SPIRAL2 in RNA trafficking.

2014

1 tabla y 2 figuras

ArabidopsisPlant ScienceMicrotubulesRNA Transport//purl.org/becyt/ford/1 [https]INFECTIONTobacco mosaic virusTOBACCO-MOSAIC-VIRUSMovement proteinCytoskeletonCytoskeletonGeneticsCoat proteinMultidisciplinaryTRANSGENIC PLANTSQREXPERIMENTAL EVOLUTIONARABIDOPSISBiological Evolution3. Good healthCell biologyMacromolecular assemblyTobacco Mosaic VirusMICROTUBULESMedical MicrobiologyTobamovirusesViral Pathogensdynamic plasticityHost-Pathogen InteractionsMedicineTobacco mosaic viruscortical microtubuleCellular Structures and OrganellesCortical microtubuleARABIDOPSIS CORTICAL MICROTUBULESCell wallsMicrotubule-Associated ProteinsCIENCIAS NATURALES Y EXACTASResearch ArticleEvolutionary ProcessesSciencePlant Cell BiologyPlant PathogensORGANIZATIONBiologyMicrobiologyPlant Viral PathogensCiencias BiológicasMOVEMENT PROTEINComplexesMicrotubuleEvolutionary Adaptation//purl.org/becyt/ford/1.6 [https]Microbial PathogensPlant DiseasesEvolutionary BiologyArabidopsis ProteinsBotánicaRNABiology and Life SciencesCell BiologyPlant PathologyTMVCytoplasmMutationRNAVirologíaHELICAL GROWTHPloS one
researchProduct

Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length

2013

International audience; Septins are a large, evolutionarily conserved family of GTPases that form hetero-oligomers and interact with the actin-based cytoskeleton and microtubules. They are involved in scaffolding functions, and form diffusion barriers in budding yeast, the sperm flagellum and the base of primary cilia of kidney epithelial cells. We investigated the role of septins in the primary cilium of retinal pigmented epithelial (RPE) cells, and found that SEPT2 forms a 1:1:1 complex with SEPT7 and SEPT9 and that the three members of this complex colocalize along the length of the axoneme. Similar to observations in kidney epithelial cells, depletion of cilium-localized septins by siRN…

AxonemeAxonemeMicrotubule-associated protein[SDV]Life Sciences [q-bio]DIFFUSION BARRIERTUBULINCell Cycle Proteinsmacromolecular substancesORGANIZATIONCYTOSKELETONBiologySeptinMicrotubulesRetinaCell Line03 medical and health sciences0302 clinical medicineMicrotubuleCiliogenesisHumansCiliaCytoskeletonMolecular BiologyAFFINITY-REGULATING KINASEActin030304 developmental biologyCILIOGENESIS0303 health sciencesPrimary ciliumCOMPLEXSperm flagellumCilium030302 biochemistry & molecular biologyColocalizationEpithelial CellsAnatomyCell BiologyActinsCell biology[SDV] Life Sciences [q-bio]MAMMALIAN SEPTINSMAP4CELLSbiological phenomena cell phenomena and immunityMicrotubule-Associated Proteins030217 neurology & neurosurgerySeptinsDevelopmental BiologyResearch Article
researchProduct

A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice

2015

Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia — including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells — which exert various functions during tissue development and homeostasis. In the photoreceptor cilium,…

AxonemeMalecongenital hereditary and neonatal diseases and abnormalitiesHuntingtinCentrioleMice TransgenicNerve Tissue ProteinsBiologyMicrotubulesPhotoreceptor cellRetinalcsh:RC321-571MiceHuntington's diseaseIntraflagellar transportmental disordersmedicineAnimalsHumansPhotoreceptor CellsHuntingtinCilialcsh:Neurosciences. Biological psychiatry. NeuropsychiatryComputingMilieux_MISCELLANEOUSHuntingtin ProteinPhotoreceptorCiliumNuclear ProteinsHuntington's diseasemedicine.diseaseCell biologyCiliopathyDisease Models Animalmedicine.anatomical_structureHEK293 CellsHuntington DiseaseNeurologyFemale[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]sense organs
researchProduct

Shortstop Recruits EB1/APC1 and Promotes Microtubule Assembly at the Muscle-Tendon Junction

2003

Abstract Background: Shot (previously named Kakapo), is a Drosophila Plakin family member containing both Actin binding and microtubule binding domains. In Drosophila , it is required for a wide range of processes, including axon extension, dendrite formation, axonal terminal arborization at the neuromuscular junction, tendon cell development, and adhesion of wing epithelium. Results: To address how Shot exerts its activity at the molecular level, we investigated the molecular interactions of Shot with candidate proteins in mature larval tendon cells. We show that Shot colocalizes with EB1/APC1 and with a compact microtubule array extending between the muscle-tendon junction and the cuticle…

Blotting WesternFluorescent Antibody TechniqueBiologyTransfectionMicrotubulesCell junctionGeneral Biochemistry Genetics and Molecular BiologyTendonsTendon cellMicrotubuleAnimalsDrosophila ProteinsCytoskeletonActinPlakinAgricultural and Biological Sciences(all)Biochemistry Genetics and Molecular Biology(all)MusclesAxon extensionMicrofilament ProteinsfungiPrecipitin TestsCell biologyCytoskeletal ProteinsIntercellular JunctionsLarvaMuscle tendon junctionDrosophilaGeneral Agricultural and Biological SciencesCurrent Biology
researchProduct

Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option?

2015

Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines th…

Cancer ResearchEpothilonesSettore MED/06 - Oncologia MedicaOmbrabulin2734Antineoplastic AgentsReview ArticleMicrotubulesPathology and Forensic Medicinechemistry.chemical_compoundMicrotubuleNeoplasmsHumansRC254-282QH573-671biologyNeoplasms. Tumors. Oncology. Including cancer and carcinogensCancer Research; Molecular Medicine; 2734; Cell BiologyCell BiologyGeneral MedicineDiscodermolideCell cycleCell biologySpindle apparatusTubulinchemistrybiology.proteinMolecular MedicineCytologyIntracellularAnalytical Cellular Pathology
researchProduct

Novel Approaches for Glioblastoma Treatment: Focus on Tumor Heterogeneity, Treatment Resistance, and Computational Tools

2019

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain tumor. Currently, the suggested line of action is the surgical resection followed by radiotherapy and treatment with the adjuvant temozolomide (TMZ), a DNA alkylating agent. However, the ability of tumor cells to deeply infiltrate the surrounding tissue makes complete resection quite impossible, and in consequence, the probability of tumor recurrence is high, and the prognosis is not positive. GBM is highly heterogeneous and adapts to treatment in most individuals. Nevertheless, these mechanisms of adaption are unknown. RECENT FINDINGS: In this review, we will discuss the recent discoveries in molecular and cellular heterog…

Cancer Researchmedicine.medical_treatmentDNA Mutational AnalysisBrain tumorBioinformaticsComplete resectionTumor heterogeneityCancer VaccinesMicrotubulesArticleClonal EvolutionMachine LearningGenetic HeterogeneityCancer stem cellAntineoplastic Combined Chemotherapy ProtocolsTumor MicroenvironmentMedicineHumansTreatment resistancePrecision MedicineDNA Modification MethylasesImmune Checkpoint InhibitorsTemozolomideModels Geneticbusiness.industryBrain NeoplasmsTumor Suppressor ProteinsBrainComputational BiologyChemoradiotherapy Adjuvantmedicine.diseasePrognosisRadiation therapyDNA Repair EnzymesOncologyDrug Resistance NeoplasmMutationTumor Suppressor Protein p53businessGlioblastomaGlioblastomamedicine.drug
researchProduct

The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic

2022

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators a…

Cell divisionGTPase-activating proteinGolgi ApparatusGTPaseBiologyMicrotubulesMitochondrial Dynamicssymbols.namesakeMiceMicrotubuleCiliogenesisAnimalsCiliaMolecular BiologyADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCorrectionCell BiologyGolgi apparatusFibroblastsCell biologyCytoskeletal Proteinsmitochondrial fusionsymbolsSignal Transduction
researchProduct

The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.

2008

In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin a…

Cell signalingCytochalasin Dgenetic structuresLightPaclitaxelPhalloidineDark AdaptationBiologyHeterocyclic Compounds 4 or More RingsMicrotubulesRetinaMiceStructural BiologyMicrotubuleRetinal Rod Photoreceptor CellsCytoskeletal drugsThiabendazolemedicineArrestinAnimalsTransducinCytoskeletonMicroscopy ImmunoelectronActinCytoskeletonVision OcularMice KnockoutRetinal pigment epitheliumArrestinHomozygoteCell BiologyDarknessRod Cell Outer Segmenteye diseasesActinsCell biologyMice Inbred C57BLActin CytoskeletonProtein Transportmedicine.anatomical_structureMicroscopy Fluorescencesense organsTransducinCell Migration AssaysSignal TransductionCell motility and the cytoskeleton
researchProduct