Search results for "MONODROMY"

showing 10 items of 44 documents

Geometric représentations of the braid groups

2010

We show that the morphisms from the braid group with n strands in the mapping class group of a surface with a possible non empty boundary, assuming that its genus is smaller or equal to n/2 are either cyclic morphisms (their images are cyclic groups), or transvections of monodromy morphisms (up to multiplication by an element in the centralizer of the image, the image of a standard generator of the braid group is a Dehn twist, and the images of two consecutive standard generators are two Dehn twists along two curves intersecting in one point). As a corollary, we determine the endomorphisms, the injective endomorphisms, the automorphisms and the outer automorphism group of the following grou…

[ MATH ] Mathematics [math]rigidité[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]morphisme de monodromieification de Nielsen Thurstonbraid groupGroup Theory (math.GR)[MATH] Mathematics [math]groupe de difféotopies[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]monodromieFOS: Mathematicssurface[MATH]Mathematics [math]représentation géométriquetransvectionmonodromymapping class groupMathematics::Geometric TopologyrigidityNielsen-Thurstongroupe de tressesAMS Subject Classification: Primary 20F38 57M07. Secondary 57M99 20F36 20E36 57M05.mapping groupMathematics - Group Theorygroupe de diffétopies
researchProduct

A note on the Lawrence-Krammer-Bigelow representation

2002

A very popular problem on braid groups has recently been solved by Bigelow and Krammer, namely, they have found a faithful linear representation for the braid group B_n. In their papers, Bigelow and Krammer suggested that their representation is the monodromy representation of a certain fibration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representation of Bigelow and Krammer is a sub-representation of the monodromy representation which we consider, but that it cannot be the whole representation.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsLinear representation[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)52C3001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]52C35Mathematics - Geometric TopologyMathematics::Group TheoryMathematics::Algebraic Geometry[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics20F36 52C35 52C30 32S22braid groups0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]linear representations010102 general mathematicsRepresentation (systemics)FibrationSalvetti complexesGeometric Topology (math.GT)Mathematics::Geometric TopologyHyperplaneMonodromy010307 mathematical physicsGeometry and TopologyMathematics - Group Theory32S22
researchProduct

Some fourth order CY-type operators with non symplectically rigid monodromy

2012

We study tuples of matrices with rigidity index two in $\Sp_4(\mathbb{C})$, which are potentially induced by differential operators of Calabi-Yau type. The constructions of those monodromy tuples via algebraic operations and middle convolutions and the related constructions on the level differential operators lead to previously known and new examples.

Pure mathematicsGeneral Mathematics010102 general mathematics010103 numerical & computational mathematicsDifferential operator01 natural sciencesMathematics - Algebraic GeometryFourth orderMathematics::Algebraic GeometryMonodromyMathematics - Classical Analysis and ODEsAlgebraic operationClassical Analysis and ODEs (math.CA)FOS: MathematicsHadamard product0101 mathematicsTupleMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)Mathematics
researchProduct

Picard-Fuchs operators for octic arrangements, I: the case of orphans

2019

We report on $25$ families of projective Calabi-Yau threefolds that do not have a point of maximal unipotent monodromy in their moduli space. The construction is based on an analysis of certain pencils of octic arrangements that were found by C. Meyer. There are seven cases where the Picard-Fuchs operator is of order two and $18$ cases where it is of order four. The birational nature of the Picard-Fuchs operator can be used effectively to distinguish between families whose members have the same Hodge numbers.

Pure mathematicsAlgebra and Number TheoryOperator (computer programming)MonodromyGeneral Physics and AstronomyOrder (group theory)UnipotentProjective testMathematical PhysicsMathematicsModuli space
researchProduct

Principal Poincar\'e Pontryagin Function associated to some families of Morse real polynomials

2014

It is known that the Principal Poincar\'e Pontryagin Function is generically an Abelian integral. We give a sufficient condition on monodromy to ensure that it is an Abelian integral also in non generic cases. In non generic cases it is an iterated integral. Uribe [17, 18] gives in a special case a precise description of the Principal Poincar\'e Pontryagin Function, an iterated integral of length at most 2, involving logarithmic functions with only one ramification at a point at infinity. We extend this result to some non isodromic families of real Morse polynomials.

Abelian integralPure mathematicsLogarithmApplied Mathematics34M35 34C08 14D05General Physics and AstronomyStatistical and Nonlinear PhysicsMorse codelaw.inventionPontryagin's minimum principlesymbols.namesakeMonodromylawPoincaré conjecturesymbolsPoint at infinitySpecial caseMathematics - Dynamical SystemsMathematical PhysicsMathematics
researchProduct

Some Special Foliations

2014

In this chapter we study two classes of ubiquitous foliations: Riccati foliations and turbulent foliations. A section will also be devoted to a very special foliation, which will play an important role in the minimal model theory.

Section (fiber bundle)Minimal modelPure mathematicsMathematics::Dynamical SystemsMonodromyFoliation (geology)Mathematics::Differential GeometryMathematics::Symplectic GeometryMathematics
researchProduct

Sur le rôle des singularités hamiltoniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non-linéaire.

2012

This thesis has two goals: the first one is to improve the control techniques in quantum mechanics, and more specifically in NMR, by using the tools of geometric optimal control. The second one is the study of the influence of Hamiltonian singularities in controlled systems. The chapter about optimal control study three classical problems of NMR : the inversion problem, the influence of the radiation damping term, and the steady state technique. Then, we apply the geometric optimal control to the problem of the population transfert in a three levels quantum system to recover the STIRAP scheme.The two next chapters study Hamiltonian singularities. We show that they allow to control the polar…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear optics[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Polarization attractionContrôle optimal géométrique[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Quantum control[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Geometric optimal controloptique non-linéaireHamiltonian singularities[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]monodromie hamiltonienneattraction de polarisation[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]singularités hamiltoniennes[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]contrôle quantique[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Hamiltonian monodromy
researchProduct

Integrability Conditions: Recent Results in the Theory of Integrable Models

1990

This paper reports various results achieved recently in the theory of integrable models. These are summarised in the Fig.1! At the Chester meeting [1] two of the authors were concerned [1] with the local Riemann-Hilbert problem (double-lined box in the centre of Fig.1), its limit as a non-local Riemann-Hilbert problem used to solve classical integrable models in 2+1 dimensions (two space and one time dimensions) [2,3], and the connection of this Riemann-Hilbert problem with Ueno’s [4] Riemann-Hilbert problem associated with the representation of the algebra gl(∞) in terms of Z⊗Z matrices (Z the integers) and the solution of the K-P equations in 2+1. We were also concerned [1] with the const…

Loop (topology)Pure mathematicsIntegrable systemQuantum groupLie algebraMonodromy matrixConnection (algebraic framework)Hopf algebraSymplectic manifoldMathematics
researchProduct

On Hurwitz spaces of coverings with one special fiber

2009

Let X X' Y be a covering of smooth, projective complex curves such that p is a degree 2 etale covering and f is a degree d covering, with monodromy group Sd, branched in n + 1 points one of which is a special point whose local monodromy has cycle type given by the partition e = (e1,...,er) of d. We study such coverings whose monodromy group is either W(Bd) or wN(W(Bd))(G1)w-1 for some w in W(Bd), where W(Bd) is the Weyl group of type Bd, G1 is the subgroup of W(Bd) generated by reflections with respect to the long roots ei - ej and N(W(Bd))(G1) is the normalizer of G1. We prove that in both cases the corresponding Hurwitz spaces are not connected and hence are not irreducible. In fact, we s…

AlgebraCombinatoricsWeyl groupsymbols.namesakeMonodromyGeneral MathematicssymbolsPartition (number theory)Settore MAT/03 - GeometriaCentralizer and normalizerMathematicsHurwitz spaces connected components special fiber Weyl groups of type B_d
researchProduct

Classical and Quantum Nonultralocal Systems on the Lattice

1997

We classify nonultralocal Poisson brackets for 1-dimensional lattice systems and describe the corresponding regularizations of the Poisson bracket relations for the monodromy matrix. A nonultralocal quantum algebras on the lattices for these systems are constructed. For some class of such algebras an ultralocalization procedure is proposed. The technique of the modified Bethe-Anzatz for these algebras is developed and is applied to the nonlinear sigma model problem.

PhysicsPoisson bracketNonlinear systemPure mathematicsNonlinear Sciences::Exactly Solvable and Integrable SystemsSigma modelPoisson manifoldLattice (order)Quantum mechanicsMonodromy matrixQuantumPoisson algebra
researchProduct