Search results for "Magnetoresistance"

showing 10 items of 173 documents

Magnetic Coupling in Y3Fe5O12/Gd3Fe5O12 Heterostructures

2021

Ferrimagnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$/${\mathrm{Gd}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect and spin Hall magnetoresistance measurements, we determine the alignment of the heterostruct…

Condensed Matter::Materials ScienceMagnetizationMaterials scienceMagnetic momentMagnetoresistanceFerromagnetismCondensed matter physicsFerrimagnetismMagnonGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsCoupling (probability)Inductive couplingPhysical Review Applied
researchProduct

Probing giant magnetoresistance with THz spectroscopy

2014

We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined.

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsScatteringTerahertz radiationGiant magnetoresistanceElectronSpectroscopyElectron scatteringTerahertz spectroscopy and technologyMagnetic field
researchProduct

Epitaxy and magnetotransport ofSr2FeMoO6thin films

2000

By pulsed-laser deposition epitaxial thin films of ${\mathrm{Sr}}_{2}{\mathrm{FeMoO}}_{6}$ have been prepared on (100) ${\mathrm{SrTiO}}_{3}$ substrates. Already for a deposition temperature of 320 \ifmmode^\circ\else\textdegree\fi{}C epitaxial growth is achieved. Depending on deposition parameters the films show metallic or semiconducting behavior. At high (low) deposition temperature the FeMo sublattice has a rock-salt (random) structure. The metallic samples have a large negative magnetoresistance which peaks at the Curie temperature. The magnetic moment was determined to $4{\ensuremath{\mu}}_{B}$ per formula unit (f.u.), in agreement with the expected value for an ideal ferrimagnetic ar…

Condensed Matter::Materials ScienceMaterials scienceMagnetic momentCondensed matter physicsMagnetoresistanceFerrimagnetismHall effectFormula unitCurie temperatureThin filmEpitaxyPhysical Review B
researchProduct

Structure and Properties of GdAuSn and the GdAuSn/MnAuSn System

2006

The crystal structure of GdAuSn was refined by means of single crystal X-ray diffraction. Band structure calculations based on the structural data confirmed the antiferromagnetic ground state and the metallic behaviour of GdAuSn. 119mSn, 155Gd and 197Au Mossbauer spectroscopic studies were used to verify the values of the hyperfine parameters that were given by the band structure calculations. Band structure calculations of MnAuSn confirmed that this half-Heusler compound belongs to the family of half-metallic ferromagnets. Magnetic susceptibility, conductivity and Mossbauer studies were used to characterize granular material based on the half-Heusler ferromagnet MnAuSn in the antiferromagn…

Condensed matter physicsMagnetoresistanceChemistryGeneral MedicineCrystal structureMagnetic susceptibilityInorganic ChemistryCondensed Matter::Materials ScienceAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsElectronic band structureGround stateSingle crystalHyperfine structureZeitschrift für anorganische und allgemeine Chemie
researchProduct

The 2020 skyrmionics roadmap

2020

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an inte…

DYNAMICSELECTRODYNAMICSAcoustics and UltrasonicsMagnetoresistanceNuclear TheoryMOTIONMagnetismFOS: Physical sciences02 engineering and technology01 natural sciencesNuclear Theory (nucl-th)Condensed Matter - Strongly Correlated ElectronsHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin transferMAGNETORESISTANCEddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]spintronicsSpintronics[PHYS.PHYS]Physics [physics]/Physics [physics]Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsELECTRICAL DETECTIONSkyrmionPhysicsPhysik (inkl. Astronomie)DRIVEN021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsExperimental researchSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsddc:LATTICEHigh Energy Physics - PhenomenologyskyrmionROOM-TEMPERATUREmagnetismTEMPERATURE MAGNETIC SKYRMIONS0210 nano-technologyAND gateGENERATION
researchProduct

Electron scattering mechanisms inn-type indium selenide

1984

Electron scattering mechanisms in $n$-type indium selenide are investigated by means of the temperature dependence (4-500 K) of Hall mobility and the magnetic field dependence of Hall and magnetoresistance coefficients. The Schmid model for homopolar optical-phonon scattering can explain the temperature dependence of electron mobility above 40 K. The electron-phonon coupling constant is determined, ${g}^{2}=0.054$. The optical phonon involved in the process is identified as the ${A}_{1}^{\ensuremath{'}}$ phonon with energy 14.3 meV. The magnetic field dependence of Hall and magnetoresistance coefficients is discussed in terms of the Jones-Zener expansion.

Electron mobilityMaterials scienceMagnetoresistanceCondensed matter physicsPhononScatteringchemistry.chemical_elementCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic fieldCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistrySelenideCondensed Matter::Strongly Correlated ElectronsAtomic physicsElectron scatteringIndiumPhysical Review B
researchProduct

Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing

2009

The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among o…

EngineeringSensing applicationsbusiness.industryElectrical engineeringSolid-stateGiant magnetoresistanceReviewlcsh:Chemical technologyBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryMagnetic fieldmagnetic field sensorsElectrical currentphysical sensorsCMOSlcsh:TP1-1185Electrical and Electronic Engineeringgiant magnetoresistancebusinessInstrumentationcurrent sensorsSensors (Basel, Switzerland)
researchProduct

Measuring low H field and currents with AMR sensors

2017

The growing demand from the automotive industry for high accuracy magnetic sensors and the need to perform high resolution angular position measurements have been the drivers for the industrial research in magnetic sensing technologies. This paper describes the design and characterization of several experimental devices implementing simple magnetoresistive structures targeting contactless current measurement in the tens to hundreds of milliamps range with sub-mA resolution. The ultimate goal is to extend the application area of magnetoresistive sensors beyond their current niche in automotive into more general applications. The initial set of devices tested to-date has shown a sensitivity o…

EngineeringWheatstone bridgeMagnetoresistancebusiness.industryAngular displacement010401 analytical chemistryElectrical engineeringAutomotive industryLinearity01 natural sciencesTemperature measurement0104 chemical scienceslaw.inventionHysteresislawbusinessSensitivity (electronics)2017 Spanish Conference on Electron Devices (CDE)
researchProduct

A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

2011

A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensati…

EngineeringWheatstone bridgeSpin valvemagnetoresistance sensorlcsh:Chemical technologyBiochemistryArticleRutheniumtemperature compensationAnalytical ChemistryCompensation (engineering)law.inventionMagneticslawelectrical current measurementElectric Impedancelcsh:TP1-1185Current sensorElectrical and Electronic Engineeringspin-valve sensorInstrumentationbusiness.industryTemperatureElectrical engineeringEquipment DesignAtomic and Molecular Physics and OpticsOptoelectronicsConstant currentCurrent (fluid)businessFiber optic current sensorSensitivity (electronics)Sensors
researchProduct

Analytical compact modeling of GMR based current sensors: Application to power measurement at the IC level

2010

An analytical compact model for giant magnetoresistance (GMR) based current sensors has been developed. Different spin-valve based full Wheatstone bridge sensors, with the current straps integrated in the chip, have been considered. These devices have been experimentally characterized in order to extract the model parameters. In this respect, we have focused on the sensors linear operation regime. The model, which allows the individual description of the magnetoresistive elements, has been implemented in a circuit simulator by means of a behavioral description language: Verilog-A. We also propose the use of the devices in a direct power measurement application at the integrated circuit (IC)…

EngineeringWheatstone bridgebusiness.industryElectrical engineeringGiant magnetoresistanceIntegrated circuitWattmeterCondensed Matter PhysicsChipElectronic circuit simulationElectronic Optical and Magnetic Materialslaw.inventionPower (physics)Computer Science::Hardware ArchitecturelawMaterials ChemistryElectronic engineeringCurrent sensorElectrical and Electronic EngineeringbusinessSolid-State Electronics
researchProduct