Search results for "Medicago"

showing 10 items of 107 documents

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

2009

To gain further insight into the role of the plant genome in arbuscular mycorrhiza (AM) establishment, we investigated whether symbiosis-related plant genes affect fungal gene expression in germinating spores and at the appressoria stage of root interactions. Glomus intraradices genes were identified in expressed sequence tag libraries of mycorrhizal Medicago truncatula roots by in silico expression analyses. Transcripts of a subset of genes, with predicted functions in transcription, protein synthesis, primary or secondary metabolism, or of unknown function, were monitored in spores and germinating spores and during interactions with roots of wild-type or mycorrhiza-defective (Myc–) mutan…

0106 biological sciencesPhysiologychampignon phytopathogèneBiologyGenes Plant01 natural sciencesPlant Root NodulationPlant RootsMicrobiology03 medical and health sciencesGene Expression Regulation PlantARBUSCULAR MYCORRHIZAL FUNGUSMycorrhizaeGene expressionMedicago truncatulaSpore germination[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMycorrhizaSymbiosisGene030304 developmental biologyPlant Proteins0303 health sciencesAppressoriumExpressed sequence taggénomegènefungifood and beveragesGeneral Medicine15. Life on landbiology.organism_classificationMedicago truncatulaArbuscular mycorrhizaracinesymbioseAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions

2004

We have developed a protocol in which proteins and mRNA can be analyzed from single root samples. This experimental design was validated in arbuscular mycorrhiza by comparing the proteins profiles obtained with those from a classical protein extraction process. It is a step forward to make simultaneous proteome and transcriptiome profiling possible.

0106 biological sciencesProteomeComputational biologyFungusProteomicsPlant Roots01 natural sciencesBiochemistryFungal ProteinsTranscriptome03 medical and health sciencesGene Expression Regulation PlantMycorrhizaeBotanyProtein purificationMedicago[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyElectrophoresis Gel Two-Dimensional[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRNA MessengerSymbiosisMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyGene Expression Profilingfungibiology.organism_classificationGENOMIQUEMedicago truncatulaArbuscular mycorrhizaProteomeFunctional genomics010606 plant biology & botanyPROTEOMICS
researchProduct

Impact of sewage sludges on Medicago truncatula symbiotic proteome

2004

The effects of sewage sludges were investigated on the symbiotic interactions between the model plant Medicago truncatula and the arbuscular mycorrhizal fungus Glomus mosseae or the rhizobial bacteria Sinorhizobium meliloti. By comparison to a control sludge showing positive effects on plant growth and root symbioses, sludges enriched with polycylic aromatic hydrocarbons or heavy metals were deleterious. Symbiosis-related proteins were detected and identified by two-dimensional electrophoresis and matrix-assisted laser desorption ionization mass spectrometry, and image analysis was used to study the effects of sewage sludges on M. truncatula symbiotic proteome.

0106 biological sciencesProteomeSewagePlant ScienceHorticulture01 natural sciencesBiochemistryPeptide Mapping12. Responsible consumption03 medical and health sciencesSymbiosisMycorrhizaeBotanyMedicagoElectrophoresis Gel Two-DimensionalMycorrhizaSymbiosisMolecular BiologyGlomusComputingMilieux_MISCELLANEOUS[SDV.BV.PEP] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy030304 developmental biologyPlant Proteins0303 health sciencesSinorhizobium melilotibiologySewagebusiness.industryfungifood and beveragesGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classification6. Clean waterMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationProteomebusinessSludge010606 plant biology & botanySinorhizobium meliloti
researchProduct

Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in M edicago trun…

2013

International audience; Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cros…

0106 biological sciencesRhizophagus irregularisNitrogenPhysiologyPlant SciencePlant Roots01 natural sciencesPhosphatesPhosphorus metabolismTranscriptome03 medical and health scienceschemistry.chemical_compoundNutrientSymbiosisGene Expression Regulation PlantStress PhysiologicalMycorrhizaeMedicago truncatulaBotanyPlant defense against herbivory[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPhosphate Transport ProteinsGlomeromycotaSymbiosisPlant Proteins030304 developmental biology2. Zero hunger0303 health sciencesbiologyTerpenesfungifood and beveragesPhosphorusPhosphatebiology.organism_classificationMedicago truncatulaErythritolchemistrySugar PhosphatesTranscriptomeSignal Transduction010606 plant biology & botanyNew Phytologist
researchProduct

Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis

2014

International audience; Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P and S plant nutrition, but the mechanisms behind these exchang…

0106 biological sciencesRhizophagus irregularisS deficiencyTranscription Genetic[SDV]Life Sciences [q-bio]FungusPlant Sciencelcsh:Plant culture01 natural sciencesAM interactionrhizophagus irregularissulfur deficiencyTranscriptomeCell wall03 medical and health sciencesBotanymedicago truncatula;transcriptome;S deficiency;AM interaction;rhizophagus irregularis[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110Original Research ArticleGene030304 developmental biology2. Zero hungerAbiotic component0303 health sciencescarencebiologyarbuscular mycorrhizafungifood and beveragesmedicago truncatulabiology.organism_classificationMedicago truncatulaArbuscular Mycorrhizal Symbiosis[SDE]Environmental SciencesPlant nutritionnutrition soufréetranscriptome010606 plant biology & botany
researchProduct

Organelle protein changes in arbuscular mycorrhizal Medicago truncatula roots as deciphered by subcellular proteomics

2019

Prod 2020-8c SPE IPM INRA UB CNRS; The roots of most land plants can enter a symbiotic relationship with arbuscular mycorrhizal (AM) soil‐borne fungi belonging to the phylum Glomeromycota, which improves the mineral nutrition of the host plant. The fungus enters the root through the epidermis and grows into the cortex where it differentiates into a highly branched hyphal structure called the arbuscule. The role of the plant membrane system as the agent for cellular morphogenesis and signal/nutrient exchanges is especially accentuated during AM endosymbiosis. Notably, fungal hyphae are always surrounded by the host membrane, which is referred to as the perifungal membrane around intracellula…

0106 biological sciencesRhizophagus irregularis[SDV]Life Sciences [q-bio]BiologyProteomicsplasma membrane01 natural sciences03 medical and health sciencesroot plastidsBotanyOrganelle[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRhizophagus irregularismicrosomesShotgun proteomics030304 developmental biology0303 health sciencesspectral countingSpectral countingfungifood and beveragesbiology.organism_classificationMedicago truncatulashotgun proteomicscellular fractionation methods[SDE]Environmental SciencesArbuscular mycorrhizal010606 plant biology & botany
researchProduct

Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula

2004

To construct macro- and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro- and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments usin…

0106 biological sciencesRoot nodule[SDV]Life Sciences [q-bio]Plant Roots01 natural sciencesApplied Microbiology and BiotechnologyTranscriptomeADNCGene Expression Regulation PlantGene Expression Regulation FungalMycorrhizaeMedicagoPCR-basedComputingMilieux_MISCELLANEOUSOligonucleotide Array Sequence AnalysisPlant ProteinsExpressed Sequence Tags2. Zero hunger0303 health sciencesnodulin genesroot nodule symbiosisarbuscular mycorrhizafood and beveragesEquipment DesignGeneral MedicineMedicago truncatulaArbuscular mycorrhiza[SDV] Life Sciences [q-bio]expression profilingDNA microarrayBiotechnologyBioengineeringComputational biologyBiologySensitivity and Specificity03 medical and health sciencesComplementary DNABotanySymbiosisLeghemoglobin030304 developmental biologyGene Expression ProfilingfungiReproducibility of Resultsbiology.organism_classificationEquipment Failure AnalysisGene expression profilingphosphate transportercDNA array010606 plant biology & botany
researchProduct

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…

2012

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…

0106 biological sciencesSucrose[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesSIEVE ELEMENTSchemistry.chemical_compoundGene Expression Regulation Plantsucrose transporterMycorrhizaePHLOEMROOTSPlant Proteins2. Zero hungerRegulation of gene expression0303 health sciencesPHOSPHATE TRANSPORTERbiologyfood and beveragesARABIDOPSISSUTMedicago truncatulasugar partitioning[SDE]Environmental Sciencessugar transportGlomus intraradicesEXPRESSIONTOMATO SUGAR TRANSPORTERMolecular Sequence DataGENE FAMILYPhosphates03 medical and health sciencesSymbiosisBotanyMedicago truncatula[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSSugarGlomeromycotaSymbiosisGeneMolecular Biology030304 developmental biologyfungiMembrane Transport Proteins15. Life on landbiology.organism_classificationMONOSACCHARIDE TRANSPORTERYeastCarbonchemistryHeterologous expression010606 plant biology & botanyMolecular plant
researchProduct

Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula.

2010

International audience; Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycor…

0106 biological sciencesTranscription GeneticPhysiologyGLOMUS INTRARADICESMutantMolecular Sequence Data01 natural sciences03 medical and health sciencesTranscription (biology)Gene Expression Regulation PlantBLUE COPPER-BINDINGMYCRORHIZE ARBUSCULAIREMycorrhizaeGene expressionBotanyMedicago truncatulaProtein Isoforms[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMEMycorrhizaGenePhylogeny030304 developmental biologyPlant Proteins2. Zero hunger0303 health sciencesbiologyfungiGeneral Medicinebiology.organism_classificationMolecular biologyMedicago truncatulaGene expression profilingReal-time polymerase chain reactionCarrier ProteinsAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

Unravelling the determinants of freezing tolerance in Medicago truncatula: a first step towards improving the response of crop legumes to freezing st…

2020

International audience; Freezing is a major environmental limitation that affects biomass and seed productivity in a large number of crop species including legumes. Medicago truncatula is a model molecular‐genetic system for legume biology. A strategy to decipher freezing tolerance after a cold acclimation period in M. truncatula was developed using a quantitative genetic approach. Three main quantitative trait loci (QTL) with additive effects for freezing damage were detected on chromosomes 1, 4, and 6 using a recombinant inbred line population derived from a cross between the freezing‐tolerant accession F83005‐5 and the freezing‐sensitive accession DZA045‐5. The QTL on chromosome 6, named…

0106 biological sciences[SDE] Environmental SciencesCandidate genequantitative trait loci (QTL)[SDV]Life Sciences [q-bio]PopulationQuantitative trait locus01 natural sciences03 medical and health sciencesMedicago truncatulaCold acclimation[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyCopy-number variationCBF/DREB1 geneseducationGeneComputingMilieux_MISCELLANEOUScool-season crop legumes030304 developmental biologySyntenyGenetics0303 health scienceseducation.field_of_studybiologysyntenyfood and beveragesbiology.organism_classificationMedicago truncatula[SDV] Life Sciences [q-bio]freezing stress[SDE]Environmental Sciencescandidate genes010606 plant biology & botany
researchProduct