Search results for "Mesoscopic System"

showing 10 items of 587 documents

Dopant-controlled single-electron pumping through a metallic island

2016

We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciencesSilicon on insulator02 engineering and technologyElectron01 natural sciences[PHYS] Physics [physics]MetalElectron transferMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Quantum tunnelling[PHYS]Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsDopantbusiness.industryResonance021001 nanoscience & nanotechnology[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]visual_artvisual_art.visual_art_mediumOptoelectronicsRadio frequency0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]Applied Physics Letters
researchProduct

A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission

2010

This work reports on hard x-ray photoelectron spectroscopy (HAXPES) of CoFeB based tunnel junctions. Aim is to explain the role of the boron diffusion for the observed improvement of the tunneling magnetoresistance ratio with increasing annealing temperature. The high bulk sensitivity of HAXPES was used as a nondestructive technique to analyze CoFeB–MgO–CoFeB magnetic tunnel junctions. The investigated samples were processed at different annealing temperatures from 523 to 923 K. Hard x-ray core level spectroscopy reveals an enforced diffusion of boron from the CoFeB into the adjacent Ta layer with increasing annealing temperature. The dependence of the tunneling magnetoresistance on the ann…

Materials sciencePhysics and Astronomy (miscellaneous)MagnetoresistanceSpin polarizationCondensed matter physicsAnnealing (metallurgy)Fermi levelchemistry.chemical_elementHeterojunctionFermi energyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials Sciencesymbols.namesakechemistryX-ray photoelectron spectroscopyCondensed Matter::SuperconductivitysymbolsBoronApplied Physics Letters
researchProduct

The Engineering of Hot Carbon Nanotubes with a Focused Electron Beam

2004

Single-wall and multiwall carbon nanotubes at high temperature are irradiated with the focused electron beam in an electron microscope. Nanotubes can be tailored with monolayer precision, and new morphologies of nanotubes are created. Atoms from layers of multiwall tubes can be removed and the tubes can be bent by a predefined angle. Bundles of single-wall tubes are transformed locally to multiwall tubes with coherent transition between the two modifications.

Materials sciencePhysics::Instrumentation and DetectorsMechanical EngineeringNanostructured materialsBent molecular geometryBioengineeringMechanical properties of carbon nanotubesGeneral ChemistryCarbon nanotubeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter Physicslaw.inventionCondensed Matter::Materials SciencelawMonolayerCathode rayGeneral Materials ScienceIrradiationElectron microscopeComposite materialComputer Science::DatabasesNano Letters
researchProduct

Second-harmonic Generation Microscopy of Carbon Nanotubes

2012

We image an individual single-walled carbon nanotube (SWNT) by second-harmonic generation (SHG) and transmission electron microscopy and propose that SHG microscopy could be used to probe the handedness of chiral SWNTs.

Materials sciencePhysics::Medical PhysicsPhysics::OpticsSecond-harmonic generationScanning gate microscopyNanotechnologyCarbon nanotubeSecond Harmonic Generation MicroscopyCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionOptical properties of carbon nanotubesCondensed Matter::Materials ScienceTransmission electron microscopylawEnergy filtered transmission electron microscopyPhotoconductive atomic force microscopyConference on Lasers and Electro-Optics 2012
researchProduct

Photodynamics at the CdSe Quantum Dot–Perylene Diimide Interface: Unraveling the Excitation Energy and Electron Transfer Pathways

2021

Excitation energy and charge transfer processes in perylene diimide dye–CdSe quantum dot complexes have been studied by femtosecond transient absorption spectroscopy. After excitation of the quantu...

Materials sciencePhysics::Optics02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundElectron transferGeneral EnergychemistryQuantum dotChemical physicsDiimideFemtosecondUltrafast laser spectroscopyPhysics::Atomic and Molecular ClustersPhysical and Theoretical Chemistry0210 nano-technologySpectroscopyPeryleneExcitationThe Journal of Physical Chemistry C
researchProduct

Design, near-field characterization, and modeling of 45 circle surface-plasmon Bragg mirrors

2006

The development of surface plasmon polariton (SPP) optical elements is mandatory in order to achieve surface plasmon based photonics. A current approach to reach this goal is to take advantage of the interaction of SPP with defects and design elements obtained by the micro- or nano-structuration of the metal film. In this work, we have performed a detailed study of the performance and behavior of SPP-Bragg mirrors, designed for 45\ifmmode^\circ\else\textdegree\fi{} incidence, based on this approach. Mirrors consisting of gratings of both metal ridges on the metal surface and grooves engraved in the metal, fabricated by means of electron beam lithography and focused ion beam, have been consi…

Materials sciencePhysics::OpticsNear and far field02 engineering and technology01 natural sciencesFocused ion beam010309 opticsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesTransmission coefficient[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall][PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]business.industryScatteringSurface plasmon021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurface plasmon polaritonElectronic Optical and Magnetic Materials[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicPhotonics0210 nano-technologybusinessElectron-beam lithography
researchProduct

Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

2013

Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Gamma-point of the Brillouin zone (E0 gap) has been recently measured, E0 = 0.46 eV at low temperature. The electronic gap at the A point of the Brillouin zone (equivalent to the L point in the zinc-blende structure, E1) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band st…

Materials sciencePolymers and PlasticsFOS: Physical sciencesBiomaterialschemistry.chemical_compoundsymbols.namesakeCondensed Matter::Materials ScienceAb initio quantum chemistry methodsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electronic band structureWurtzite crystal structureCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::Otherbusiness.industryMetals and AlloysMaterials Science (cond-mat.mtrl-sci)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBrillouin zoneSemiconductorchemistryCrystal field theorysymbolsIndium arsenidebusinessRaman scattering
researchProduct

Momentum and energy dissipation of hot electrons in a Pb/Ag(111) quantum well system

2021

The band structure of multilayer systems plays a crucial role for the ultrafast hot carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited electrons in a highly ordered Pb monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). Using time-resolved two-photon momentum microscopy with femtosecond visible light pulses, we show that the electron dynamics of the Pb/Ag(111) quantum well system is largely dominated by two types of scattering processes: (i) isotropic intraband scattering processes within the quantum well state (QWS) and (ii) isotropic interband sca…

Materials scienceScatteringBilayerPosition and momentum space02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsExcited state0103 physical sciencesMonolayerPhysics::Atomic and Molecular ClustersQuasiparticle010306 general physics0210 nano-technologyElectronic band structureQuantum wellPhysical Review B
researchProduct

Polarized and resonant Raman spectroscopy on single InAs nanowires

2011

We report polarized Raman scattering and resonant Raman scattering studies on single InAs nanowires. Polarized Raman experiments show that the highest scattering intensity is obtained when both the incident and analyzed light polarizations are perpendicular to the nanowire axis. InAs wurtzite optical modes are observed. The obtained wurtzite modes are consistent with the selection rules and also with the results of calculations using an extended rigid-ion model. Additional resonant Raman scattering experiments reveal a redshifted E1 transition for InAs nanowires compared to the bulk zinc-blende InAs transition due to the dominance of the wurtzite phase in the nanowires. Ab initio calculatio…

Materials scienceScatteringCondensed Matter::OtherNanotecnologiaNanowireCiència dels materialsCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicsElectronic Optical and Magnetic MaterialsEspectroscòpia Ramansymbols.namesakeCondensed Matter::Materials ScienceX-ray Raman scatteringNuclear magnetic resonancesymbolsCoherent anti-Stokes Raman spectroscopyRaman spectroscopyElectronic band structureRaman scatteringWurtzite crystal structure
researchProduct

Electron-phonon heat transport and electronic thermal conductivity in heavily doped silicon-on-insulator film

2003

Electron–phonon interaction and electronic thermal conductivity have been investigated in heavily doped silicon at subKelvin temperatures. The heat flow between electron and phonon systems is found to be proportional to T6. Utilization of a superconductor–semiconductor–superconductor thermometer enables a precise measurement of electron and substrate temperatures. The electronic thermal conductivity is consistent with the Wiedemann–Franz law. Peer reviewed

Materials scienceSiliconPhononphononsGeneral Physics and AstronomySilicon on insulatorchemistry.chemical_elementSubstrate (electronics)dopingsuperconductorsCondensed Matter::Materials ScienceThermal conductivityCondensed Matter::Superconductivitythermal conductivitySOICondensed matter physicsPhysicsDopingelectronsThermal conductionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectWiedemann-Franz lawsilicon-on-insulatorchemistryelectron-phonon interactionssilicon dopingelemental semiconductorsWiedemann–Franz lawheat transportheavily doped semiconductors
researchProduct