Search results for "Method"

showing 10 items of 13253 documents

Imaging through scattering media by microstructured illumination

2016

We describe a method to image objects through scattering media based on microstructured illumination. A spatial light modulator is used to project a set of microstructured light patterns onto the sample. The image is retrieved computationally from the photocurrent fluctuations provided by a detector with no spatial structure. We review several optical setups developed in the last years with different illumination strategies and applied to different turbid media. In particular we introduce a new non-invasive optical system based on a reflection configuration. Our technique does not require coherent light, raster scanning, time-gated detection or a-priori calibration processes. Furthermore it…

0301 basic medicineSpatial light modulatorbusiness.industryScatteringDetectorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONSample (graphics)03 medical and health sciences030104 developmental biologyCompressed sensingOpticsCalibrationReflection (physics)OptoelectronicsbusinessRaster scan2016 15th Workshop on Information Optics (WIO)
researchProduct

Analyzing the feasibility of time correlated spectral entropy for the assessment of neuronal synchrony

2016

In this paper, we study neuronal network analysis based on microelectrode measurements. We search for potential relations between time correlated changes in spectral distributions and synchrony for neuronal network activity. Spectral distribution is quantified by spectral entropy as a measure of uniformity/complexity and this measure is calculated as a function of time for the recorded neuronal signals, i.e., time variant spectral entropy. Time variant correlations in the spectral distributions between different parts of a neuronal network, i.e., of concurrent measurements via different microelectrodes, are calculated to express the relation with a single scalar. We demonstrate these relati…

0301 basic medicineSpectral power distributionhippocampusta3112Correlation03 medical and health sciences0302 clinical medicineStatisticsBiological neural networkAnimalsEntropy (information theory)Neuronal synchronyAnalysis methodMathematicsta217Quantitative Biology::Neurons and Cognitionta213Spectral entropybiological neural networkselectrodesrats030104 developmental biologycorrelationBiological systementropyprobesMicroelectrodes030217 neurology & neurosurgery
researchProduct

CUDA-enabled hierarchical ward clustering of protein structures based on the nearest neighbour chain algorithm

2015

Clustering of molecular systems according to their three-dimensional structure is an important step in many bioinformatics workflows. In applications such as docking or structure prediction, many algorithms initially generate large numbers of candidate poses (or decoys), which are then clustered to allow for subsequent computationally expensive evaluations of reasonable representatives. Since the number of such candidates can easily range from thousands to millions, performing the clustering on standard central processing units (CPUs) is highly time consuming. In this paper, we analyse and evaluate different approaches to parallelize the nearest neighbour chain algorithm to perform hierarc…

0301 basic medicineSpeedupComputer scienceCorrelation clusteringParallel computingTheoretical Computer Science03 medical and health sciencesCUDA030104 developmental biologyHardware and ArchitectureCluster analysisAlgorithmSoftwareWard's methodThe International Journal of High Performance Computing Applications
researchProduct

Fast UPLC/PDA determination of squalene in Sicilian P.D.O. pistachio from Bronte: Optimization of oil extraction method and analytical characterizati…

2017

Abstract A fast reversed-phase UPLC method was developed for squalene determination in Sicilian pistachio samples that entry in the European register of the products with P.D.O. In the present study the SPE procedure was optimized for the squalene extraction prior to the UPLC/PDA analysis. The precision of the full analytical procedure was satisfactory and the mean recoveries were 92.8 ± 0.3% and 96.6 ± 0.1% for 25 and 50 mg L−1 level of addition, respectively. Selected chromatographic conditions allowed a very fast squalene determination; in fact it was well separated in ∼0.54 min with good resolution. Squalene was detected in all the pistachio samples analyzed and the levels ranged from 5…

0301 basic medicineSqualeneResolution (mass spectrometry)Settore CHIM/10 - Chimica Degli AlimentiUplc pda01 natural sciencesHigh-performance liquid chromatographyAnalytical Chemistry03 medical and health sciencesSqualenechemistry.chemical_compoundLimit of DetectionNutsPlant OilsSicilySqualene; pistachio (Pistacia vera L.); Food analysis; Green pistachio Bronte (P.D.O.); UPLC/PDA analysis030109 nutrition & dieteticsChromatographyChemistryPlant Extracts010401 analytical chemistryExtraction (chemistry)Reproducibility of ResultsGeneral MedicineSqualene pistachio (Pistacia vera L.) food analysis Green Pistachio Bronte (P.D.O.) UPLC/PDA analysis.Squalene pistachio (Pistacia vera L.) Food analysis Green pistachio Bronte (P.D.O.) UPLC/PDA analysis0104 chemical sciencesPistaciaExtraction methodsFood AnalysisFood Science
researchProduct

Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies

2016

Mieth, Bettina et al.

0301 basic medicineStatistical methodsComputer scienceGenome-wide association studyMachine learningcomputer.software_genreGenome-wide association studiesStatistical powerArticle[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Set (abstract data type)03 medical and health sciences[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG][MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]10007 Department of EconomicsStatistical significanceReplication (statistics)genomeStatistical hypothesis testingGenetic association1000 MultidisciplinaryMultidisciplinarybusiness.industryComputational scienceInstitut für Mathematik330 EconomicsSupport vector machine030104 developmental biologyMultiple comparisons problemwide association studiesstatistical methodsArtificial intelligencebusinesscomputer
researchProduct

Partitioned learning of deep Boltzmann machines for SNP data.

2016

Abstract Motivation Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. Results After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen…

0301 basic medicineStatistics and ProbabilityComputer scienceMachine learningcomputer.software_genre01 natural sciencesBiochemistryPolymorphism Single NucleotideMachine Learning010104 statistics & probability03 medical and health sciencessymbols.namesakeJoint probability distributionHumans0101 mathematicsMolecular BiologyStatistical hypothesis testingArtificial neural networkbusiness.industryGene Expression Regulation LeukemicDeep learningUnivariateComputational BiologyManifoldComputer Science ApplicationsData setComputational Mathematics030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONComputational Theory and MathematicsLeukemia MyeloidBoltzmann constantsymbolsData miningArtificial intelligencebusinesscomputerSoftwareCurse of dimensionalityBioinformatics (Oxford, England)
researchProduct

Gene-based and semantic structure of the Gene Ontology as a complex network

2012

The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. This approach might be usefully complemented by a bottom-up approach based on the knowledge of relationships amongst genes. To this end, we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium and a gene-based …

0301 basic medicineStatistics and ProbabilityFOS: Computer and information sciencesPhysics - Physics and SocietyComplex systemComputer scienceMolecular Networks (q-bio.MN)Complex systemFOS: Physical sciencesNetworkCondensed Matter PhysicPhysics and Society (physics.soc-ph)computer.software_genreQuantitative Biology - Quantitative MethodsStatistics - ApplicationsGeneSemantic network03 medical and health sciencesSemantic similarityQuantitative Biology - Molecular NetworksApplications (stat.AP)GeneQuantitative Methods (q-bio.QM)Community detectionGene ontologybusiness.industryOntologyOntology-based data integrationComplex networkCondensed Matter PhysicsBipartite system030104 developmental biologyBipartite system; Community detection; Complex systems; Genes; Networks; Ontology; Condensed Matter Physics; Statistics and ProbabilityFOS: Biological sciencesOntologyWeighted networkData miningArtificial intelligenceComputingMethodologies_GENERALbusinesscomputerNatural language processing
researchProduct

L1-Penalized Censored Gaussian Graphical Model

2018

Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data generated by polymerase chain reactions and flow cytometer. The combination of censoring and high-dimensionality make inference of the underlying genetic networks from these data very challenging. In this article, we propose an $\ell_1$-penalized Gaussian graphical model for censored data and derive two EM-like algorithm…

0301 basic medicineStatistics and ProbabilityFOS: Computer and information sciencesgraphical lassoComputer scienceGaussianNormal DistributionInferenceMultivariate normal distribution01 natural sciencesMethodology (stat.ME)010104 statistics & probability03 medical and health sciencessymbols.namesakeGraphical LassoExpectation–maximization algorithmHumansComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsStatistics - MethodologyEstimation theoryReverse Transcriptase Polymerase Chain ReactionEstimatorexpectation-maximization algorithmGeneral MedicineCensoring (statistics)High-dimensional datahigh-dimensional dataGaussian graphical model030104 developmental biologysymbolscensored dataCensored dataExpectation-Maximization algorithmStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaAlgorithmAlgorithms
researchProduct

panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data.

2018

Abstract Motivation The advent of next-generation sequencing has boosted the analysis of bacterial genome evolution. Insertion sequence (IS) elements play a key role in prokaryotic genome organization and evolution, but their repetitions in genomes complicate their detection from short-read data. Results PanISa is a software pipeline that identifies IS insertions ab initio in bacterial genomes from short-read data. It is a highly sensitive and precise tool based on the detection of read-mapping patterns at the insertion site. PanISa performs better than existing IS detection systems as it is based on a database-free approach. We applied it to a high-risk clone lineage of the pathogenic spec…

0301 basic medicineStatistics and ProbabilityLineage (genetic)Computer scienceAb initioComputational biologyBacterial genome size[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]BiochemistryGenome[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing03 medical and health sciences[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR][SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Insertion sequenceMolecular BiologyGenomic organizationHigh-Throughput Nucleotide SequencingSequence Analysis DNA[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM][SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyPipeline (software)[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputer Science ApplicationsComputational Mathematics030104 developmental biologyComputational Theory and Mathematics[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]DNA Transposable Elements[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Genome BacterialSoftwareBioinformatics (Oxford, England)
researchProduct

Variance component analysis to assess protein quantification in biomarker discovery. Application to MALDI-TOF mass spectrometry.

2017

International audience; Controlling the technological variability on an analytical chain is critical for biomarker discovery. The sources of technological variability should be modeled, which calls for specific experimental design, signal processing, and statistical analysis. Furthermore, with unbalanced data, the various components of variability cannot be estimated with the sequential or adjusted sums of squares of usual software programs. We propose a novel approach to variance component analysis with application to the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) technology and use this approach for protein quantification by a classical signal processing algori…

0301 basic medicineStatistics and ProbabilityMALDI-TOFexperimental designBiometryprotein quantificationQuantitative proteomicsVariance component analysis[ CHIM ] Chemical Sciences01 natural sciencesSignaltechnological variability010104 statistics & probability03 medical and health sciencesstatistical analysis[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[CHIM.ANAL]Chemical Sciences/Analytical chemistryComponent (UML)[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]biomarker discoverysum of squares type0101 mathematicsBiomarker discoverysignal processingMathematicsSignal processingAnalysis of Variance[ PHYS ] Physics [physics]Noise (signal processing)ProteinsGeneral MedicineVariance (accounting)[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]030104 developmental biologySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationLinear Modelsvariance components[ CHIM.ANAL ] Chemical Sciences/Analytical chemistryStatistics Probability and UncertaintyBiological systemAlgorithmsBiomarkersBiometrical journal. Biometrische Zeitschrift
researchProduct