Search results for "Metrology"
showing 10 items of 96 documents
Phase error analysis of clipped waveforms in surface topography measurement using projected fringes
2021
Abstract When working with the method of projected fringes outside the optical laboratory one often encounters the problem of uncontrollable ambient light. This might cause saturation of the camera which in turn results in clipping of the fringes. Since standard theories describing phase-shifting techniques assume the projected fringes to be purely sinusoidal, such clipping will result in measurement error. In this paper a detailed analysis of this problem is given, and relations between phase errors, the amount of fringe clipping and the number of phase steps are found. Moreover, the phase difference between the clipped and the unclipped fringes is described. This investigation is based on…
An interface protection system based on an embedded metrology system platform
2021
Abstract The aim of this work is to present an interface protection system (IPS) for Distributed Generators (DG) and Energy Storage Systems (ESS). The new prototype of IPS guarantees standard protection requirements, in terms of both voltage and frequency measurement accuracies and trip times. Moreover, it has the additional functionalities of implementing a communication link between the Distribution System Operator (DSO) and the DG and ESS Inverter. The new IPS is based on a smart meter platform with an integrated power line communication modem. Moreover, it has also an integrated metrology section. Experimental tests will show how this last feature allows a significant reduction of the m…
Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment
2018
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two [superscript 83m]Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2…
Coherent quantum phase slip
2012
A hundred years after discovery of superconductivity, one fundamental prediction of the theory, the coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect: whilst the latter is a coherent transfer of charges between superconducting contacts, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, the CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by usin…
Multiscale analyses and characterizations of surface topographies
2018
International audience; This work studies multiscale analyses and characterizations of surface topographies from the engineering and scientific literature with an emphasis on production engineering research and design. It highlights methods that provide strong correlations between topographies and performance or topographies and processes, and methods that can confidently discriminate topographies that were processed or that perform differently. These methods have commonalities in geometric characterizations at certain scales, which are observable with statistics and measurements. It also develops a semantic and theoretical framework and proposes a new system for organizing and designating …
Space-borne frequency comb metrology
2016
Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be i…
Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398
2020
The IAEA is currently coordinating a multi-year project to update the TRS-398 Code of Practice for the dosimetry of external beam radiotherapy based on standards of absorbed dose to water. One major aspect of the project is the determination of new beam quality correction factors, kQ, for megavoltage photon beams consistent with developments in radiotherapy dosimetry and technology since the publication of TRS-398 in 2000. Specifically, all values must be based on, or consistent with, the key data of ICRU Report 90. Data sets obtained from Monte Carlo (MC) calculations by advanced users and measurements at primary standards laboratories have been compiled for 23 cylindrical ionization chamb…
The infrared thermography control of the laser welding of amorphous polymers
2008
In laser welding technique, a real-time control of temperature distribution inside the irradiated materials is essential when attempting to optimize the process. For all laser welding methods that operate by the transmission principle, the difficulty of recording the developed temperature at the interface derives from the fact that materials to be welded are in contact throughout the entire process. In the present study, in order to overcome this issue, a contact-free method such the infrared thermography is used for surface temperature measurement. Corroborating this data with a numerical simulation of the temperature field evolution inside the components, an assessment of optimal process …
Metrological characterization and operating principle identification of static meters for reactive energy: an experimental approach under nonsinusoid…
2009
In this paper, an experimental approach is proposed for the metrological characterization of the static meters for reactive energy and for the individuation of their operating principle in nonsinusoidal conditions. The proposed approach was developed by starting from the only available accuracy test condition in the presence of the harmonics introduced by the standards for active static meters. In this paper, the proposed approach is described, and some experimental tests are presented, which were performed on some meters of different accuracy classes and with both known and unknown operating principles.
A mathematical model of the self-averaging Pitot tube
2005
Abstract Flowmeters with self-averaging Pitot tubes are more and more often applied in practice. Their advantages are practically no additional flow losses, usability in the case of high temperature of fluids and simplicity of fitting. A mathematical model of a self-averaging Pitot tube including the influence of the probe shape, selected constructional features and flow conditions on the quantity of differential pressure gained has been given in this paper. The values and ranges of variations of the coefficients established for the model have been assessed on the basis of the numerically computed velocity and pressure fields around and inside the probe. Velocity and pressure fields were ca…