Search results for "Neural Stem Cell"

showing 10 items of 250 documents

Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.

2018

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-contai…

0301 basic medicineRHOAanimal structuresventricular-subventricular zoneBiology03 medical and health sciences0302 clinical medicinegait behaviorNeuroblastCell MovementNeuroblast migrationLateral VentriclesGeneticsmedicineAnimalsreproductive and urinary physiologyN-cadherinNeuronsneuronal migrationneuronal regenerationneonatal brain injuryCadherinEmbryogenesisfungiCell Biologypostnatal neurogenesisRecovery of FunctionCadherinsEmbryonic stem cellNeural stem cellRadial glial cell030104 developmental biologymedicine.anatomical_structurenervous systemAnimals NewbornBrain Injuriesbiology.proteinMolecular MedicinerhoA GTP-Binding ProteinNeuroscienceNeuroglia030217 neurology & neurosurgeryradial glial cellCell stem cell
researchProduct

2018

A broad molecular framework of how neural stem cells are specified toward astrocyte fate during brain development has proven elusive. Here we perform comprehensive and integrated transcriptomic and epigenomic analyses to delineate gene regulatory programs that drive the developmental trajectory from mouse embryonic stem cells to astrocytes. We report molecularly distinct phases of astrogliogenesis that exhibit stage- and lineage-specific transcriptomic and epigenetic signatures with unique primed and active chromatin regions, thereby revealing regulatory elements and transcriptional programs underlying astrocyte generation and maturation. By searching for transcription factors that function…

0301 basic medicineRegulation of gene expressionCell BiologyBiologyNeural stem cellChromatinCell biology03 medical and health sciencesAstrocyte differentiation030104 developmental biologyNFIAGeneticsMolecular MedicineEpigeneticsTranscription factorEpigenomicsCell Stem Cell
researchProduct

2017

Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells …

0301 basic medicineRegulation of gene expressionGeneticsGeneral Immunology and Microbiologyanimal diseasesGeneral NeuroscienceNeurogenesisGene regulatory networkNotch signaling pathwaySubventricular zoneBiologyGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellTranscriptome03 medical and health sciences030104 developmental biologymedicine.anatomical_structurenervous systemForebrainmedicineGeneral Agricultural and Biological SciencesNeurosciencePLOS Biology
researchProduct

2016

AbstractStem cells control their mitotic activity to decide whether to proliferate or to stay in quiescence. Drosophila neural stem cells (NSCs) are quiescent at early larval stages, when they are reactivated in response to metabolic changes. Here we report that cell-contact inhibition of growth through the canonical Hippo signalling pathway maintains NSC quiescence. Loss of the core kinases hippo or warts leads to premature nuclear localization of the transcriptional co-activator Yorkie and initiation of growth and proliferation in NSCs. Yorkie is necessary and sufficient for NSC reactivation, growth and proliferation. The Hippo pathway activity is modulated via inter-cellular transmembran…

0301 basic medicineRegulation of gene expressionHippo signaling pathwayanimal structuresMultidisciplinaryGeneral Physics and AstronomyGeneral ChemistryBiologyGeneral Biochemistry Genetics and Molecular BiologyHedgehog signaling pathwayNeural stem cellnervous system diseasesCell biology03 medical and health sciences030104 developmental biologynervous systembiological phenomena cell phenomena and immunitySignal transductionStem cellMitosisreproductive and urinary physiologyDrosophila ProteinNature Communications
researchProduct

Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates.

2020

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cyt…

0301 basic medicineRegulation of gene expressionNeurogenesisRNA-Binding ProteinsTranslation (biology)RNA-binding proteinCell DifferentiationNerve Tissue ProteinsBiologyCell fate determinationGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineNeural Stem CellsNucleocytoplasmic TransportCELF ProteinsHumansProgenitor cell030217 neurology & neurosurgeryCell reports
researchProduct

Brain size and limits to adult neurogenesis

2015

The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates t…

0301 basic medicineRostral migratory streamGeneral NeuroscienceNeurogenesisBiologyNeural stem cellOlfactory bulb03 medical and health sciencesLateral ventricles030104 developmental biology0302 clinical medicinenervous systemBrain sizeForebrainProgenitor cellNeuroscience030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn.

2019

Ten-eleven-translocation (TET) proteins catalyze DNA hydroxylation, playing an important role in demethylation of DNA in mammals. Remarkably, although hydroxymethylation levels are high in the mouse brain, the potential role of TET proteins in adult neurogenesis is unknown. We show here that a non-catalytic action of TET3 is essentially required for the maintenance of the neural stem cell (NSC) pool in the adult subventricular zone (SVZ) niche by preventing premature differentiation of NSCs into non-neurogenic astrocytes. This occurs through direct binding of TET3 to the paternal transcribed allele of the imprinted gene Small nuclear ribonucleoprotein-associated polypeptide N (Snrpn), contr…

0301 basic medicineScienceCellular differentiationGeneral Physics and AstronomySubventricular zone02 engineering and technologyBiologyDNA-binding proteinArticleGeneral Biochemistry Genetics and Molecular BiologyCatalysissnRNP Core ProteinsDioxygenases03 medical and health sciencesMiceNeural Stem CellsLateral VentriclesProto-Oncogene ProteinsmedicineAnimalsRNA Small Interferinglcsh:SciencePsychological repressionreproductive and urinary physiologyMultidisciplinarySnRNP Core ProteinsQNeurogenesisBrainCell DifferentiationGeneral Chemistry021001 nanoscience & nanotechnologyNeural stem cellnervous system diseasesCell biologyDNA-Binding Proteins030104 developmental biologymedicine.anatomical_structurenervous systemAstrocyteslcsh:Qbiological phenomena cell phenomena and immunity0210 nano-technologyGenomic imprintingSignal Transduction
researchProduct

Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders.

2017

Stem cells have the capability of self-renewal and can differentiate into different cell types that might be used in regenerative medicine. Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) currently lack effective treatments. Although stem cell therapy is still on the way from bench to bedside, we consider that it might provide new hope for patients suffering with neurodegenerative diseases. In this article, we will give an overview of recent studies on the potential therapeutic use of mesenchymal stem cells (MSCs), neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent…

0301 basic medicineSettore BIO/17 - IstologiaPathologymedicine.medical_specialtymedicine.medical_treatmentRegenerative medicineModels Biological03 medical and health sciencesmedicineAnimalsHumansImmunologic FactorsInduced pluripotent stem cellPharmacologyStem cell therapybusiness.industryMultiple sclerosisStem CellsMesenchymal stem cellNeurodegenerative DiseasesGeneral MedicineStem-cell therapyNeurodegenerative disordermedicine.diseaseEmbryonic stem cellNeural stem cell030104 developmental biologyRegenerative medicineStem cellbusinessNeuroscienceStem Cell TransplantationBiomedicinepharmacotherapy = Biomedecinepharmacotherapie
researchProduct

Cellular Response to Spinal Cord Injury in Regenerative and Non-Regenerative Stages in Xenopus Laevis

2020

Abstract Background The efficient regenerative abilities at larvae stages followed by a non-regenerative response after metamorphosis in froglets makes Xenopus an ideal model organism to understand the cellular responses leading to spinal cord regeneration. Methods We compared the cellular response to spinal cord injury between the regenerative and non-regenerative stages of Xenopus laevis. For this analysis, we used electron microscopy, immunofluorescence and histological staining of the extracellular matrix. We generated two transgenic lines: i) the reporter line with the zebrafish GFAP regulatory regions driving the expression of EGFP, and ii) a cell specific inducible ablation line with…

0301 basic medicineSpinal Cord RegenerationGfapXenopusNeurogenesislcsh:RC346-429Glial scarGlial scar03 medical and health sciencesXenopus laevis0302 clinical medicineDevelopmental NeuroscienceNeural Stem CellsmedicineAnimalsRegenerationsox2Progenitor cellSpinal cord injuryZebrafishSpinal Cord RegenerationSpinal Cord InjuriesZebrafishlcsh:Neurology. Diseases of the nervous systemSpinal cordbiologyRegeneration (biology)NeurogenesisSpinal cordmedicine.diseasebiology.organism_classificationCell biology030104 developmental biologymedicine.anatomical_structureNSPCsnervous system030217 neurology & neurosurgeryResearch Article
researchProduct

Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation

2018

Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, …

0301 basic medicineTime FactorsNeurogenesis1.1 Normal biological development and functioningCellventricular-subventricular zoneMice TransgenicCell Counttime-lapse imagingSelf renewalBiologyself-renewalRegenerative MedicineMedical and Health SciencesTransgenicMice03 medical and health sciencesLateral ventricleslineage tracingNeural Stem CellsInterneuronsUnderpinning researchGeneticsmedicineAnimalsHumansCell Self RenewalB1 cellsagingdivision modeNeurogenesisNeurosciencesCell DifferentiationCell BiologyBiological SciencesStem Cell ResearchNeural stem cellCell biologysymmetric divisionB-1 cell030104 developmental biologymedicine.anatomical_structureNeurologicalMolecular MedicineStem Cell Research - Nonembryonic - Non-HumanStem cellDevelopmental BiologyAdult stem cell
researchProduct