Search results for "OBS"

showing 10 items of 6542 documents

Visual contact with catadioptric cameras

2015

Abstract Time to contact or time to collision (TTC) is utmost important information for animals as well as for mobile robots because it enables them to avoid obstacles; it is a convenient way to analyze the surrounding environment. The problem of TTC estimation is largely discussed in perspective images. Although a lot of works have shown the interest of omnidirectional camera for robotic applications such as localization, motion, monitoring, few works use omnidirectional images to compute the TTC. In this paper, we show that TTC can be also estimated on catadioptric images. We present two approaches for TTC estimation using directly or indirectly the optical flow based on de-rotation strat…

0209 industrial biotechnologyComputer scienceGeneral MathematicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOptical flow02 engineering and technologyCatadioptric system020901 industrial engineering & automationOmnidirectional cameraDepth map0202 electrical engineering electronic engineering information engineering[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]Computer visionComputingMilieux_MISCELLANEOUSPixelbusiness.industryPerspective (graphical)[ INFO.INFO-RB ] Computer Science [cs]/Robotics [cs.RO]Mobile robotReal imageComputer Science ApplicationsControl and Systems EngineeringObstacle020201 artificial intelligence & image processingArtificial intelligencebusinessSoftware
researchProduct

Hankelet-based action classification for motor intention recognition

2017

Powered lower-limb prostheses require a natural, and an easy-to-use, interface for communicating amputee’s motor intention in order to select the appropriate motor program in any given context, or simply to commute from active (powered) to passive mode of functioning. To be widely accepted, such an interface should not put additional cognitive load at the end-user, it should be reliable and minimally invasive. In this paper we present a one such interface based on a robust method for detecting and recognizing motor actions from a low-cost wearable sensor network mounted on a sound leg providing inertial (accelerometer, gyrometer and magnetometer) data in real-time. We assume that the sensor…

0209 industrial biotechnologyComputer scienceGeneral MathematicsInterface (computing)Context (language use)02 engineering and technologyAction recognitionLTI system theoryMatrix (mathematics)020901 industrial engineering & automationMatch moving0202 electrical engineering electronic engineering information engineeringMathematics (all)Computer visionObservabilitySettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionibusiness.industrySystem identificationComputer Science Applications1707 Computer Vision and Pattern RecognitionAction recognition; Motor intention recognition; Powered (active) lower-limb prostheses; Wearable sensor networks; Control and Systems Engineering; Software; Mathematics (all); Computer Science Applications1707 Computer Vision and Pattern RecognitionMotor intention recognitionComputer Science ApplicationsSupport vector machineControl and Systems EngineeringPowered (active) lower-limb prostheseWearable sensor network020201 artificial intelligence & image processingArtificial intelligencebusinessHankel matrixSoftwareRobotics and Autonomous Systems
researchProduct

Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments — a case study

2019

Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision a…

0209 industrial biotechnologyComputer scienceMachine visionTKReal-time computingRobot manipulator02 engineering and technologyWorkspaceAdaptive Reasoninglcsh:Chemical technologyBiochemistryHuman–robot interactionArticleAnalytical ChemistrySettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchinehuman-robot interaction020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineeringlcsh:TP1-1185Motion planningElectrical and Electronic EngineeringInstrumentationpath planningCollision avoidancerobot controlsmart sensingAdaptive reasoningdynamic environmentsAtomic and Molecular Physics and OpticsRobot control:Engineering::Mechanical engineering [DRNTU]ObstacleDynamic EnvironmentsRobot020201 artificial intelligence & image processingadaptive reasoning
researchProduct

Ship-to-Ship State Observer Using Sensor Fusion and the Extended Kalman Filter

2019

In this paper, a solution for estimating the relative position and orientation between two ships in six degrees-of-freedom (6DOF) using sensor fusion and an extended Kalman filter (EKF) approach is presented. Two different sensor types, based on time-of-flight and inertial measurement principles, were combined to create a reliable and redundant estimate of the relative motion between the ships. An accurate and reliable relative motion estimate is expected to be a key enabler for future ship-to-ship operations, such as autonomous load transfer and handling. The proposed sensor fusion algorithm was tested with real sensors (two motion reference units (MRS) and a laser tracker) and an experime…

0209 industrial biotechnologyComputer scienceMechanical EngineeringDegrees of freedom020207 software engineeringOcean Engineering02 engineering and technologyKalman filterSensor fusionExtended Kalman filter020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringState observerJournal of Offshore Mechanics and Arctic Engineering
researchProduct

Event-triggered robust adaptive control for discrete time uncertain systems with unmodelled dynamics and disturbances

2019

In practice, modelling errors caused by high-order unmodelled dynamics and external disturbances are unavoidable. How to ensure the robustness of an adaptive controller with respect to such modelling errors is always a critical concern. In this study, the authors consider the design of event-triggered robust adaptive control for a class of discrete-time uncertain systems which involve such modelling errors and also are allowed to be non-minimum phase. Unlike some existing event-triggered control schemes, the developed controllers do not require that the measurement errors meet the corresponding input-to-state stable condition. Global stability of the closed-loop system which means that all …

0209 industrial biotechnologyControl and OptimizationAdaptive controlObservational errorComputer scienceUncertain systems02 engineering and technologyComputer Science ApplicationsHuman-Computer InteractionVDP::Teknologi: 500020901 industrial engineering & automationDiscrete time and continuous timeControl and Systems EngineeringControl theoryRobustness (computer science)Bounded functionElectrical and Electronic EngineeringRobust controlEvent triggered
researchProduct

An Input Observer-Based Stiffness Estimation Approach for Flexible Robot Joints

2020

This letter addresses the stiffness estimation problem for flexible robot joints, driven by variable stiffness actuators in antagonistic setups. Due to the difficulties of achieving consistent production of these actuators and the time-varying nature of their internal flexible elements, which are subject to plastic deformation over time, it is currently a challenge to precisely determine the total flexibility torque applied to a robot's joint and the corresponding joint stiffness. Herein, by considering the flexibility torque acting on each motor as an unknown signal and building upon Unknown Input Observer theory, a solution for electrically-driven actuators is proposed, which consists of …

0209 industrial biotechnologyControl and OptimizationFlexibility (anatomy)Observer (quantum physics)Computer scienceBiomedical Engineering02 engineering and technologyCalibration and identificationComputer Science::Robotics020901 industrial engineering & automationArtificial IntelligenceControl theorymedicineTorqueFlexible RobotMechanical Engineeringnatural machine motionStiffness021001 nanoscience & nanotechnologyComputer Science ApplicationsHuman-Computer Interactionmedicine.anatomical_structureControl and Systems EngineeringJoint stiffnessRobotComputer Vision and Pattern Recognitionmedicine.symptomDeformation (engineering)0210 nano-technologyActuatorfailure detection and recoveryIEEE Robotics and Automation Letters
researchProduct

Disturbance observer-based disturbance attenuation control for a class of stochastic systems

2016

This paper studies a class of stochastic systems with multiple disturbances which include the disturbance with partially-known information and the white noise. A disturbance observer is constructed to estimate the disturbance with partially-known information, based on which, a disturbance observer-based disturbance attenuation control (DOBDAC) scheme is proposed by combining pole placement and linear matrix inequality (LMI) methods.

0209 industrial biotechnologyDisturbance (geology)Computer scienceAttenuation020208 electrical & electronic engineeringControl (management)Disturbance observer-based disturbance attenuation controlStochastic systemLinear matrix inequalityDisturbance observer-based disturbance attenuation control; Multiple disturbances; Stochastic system; Control and Systems Engineering; Electrical and Electronic Engineering02 engineering and technologyWhite noiseClass (biology)020901 industrial engineering & automationControl and Systems EngineeringControl theoryFull state feedbackDisturbance observer0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringMultiple disturbancesAutomatica
researchProduct

Quasi-Static Displacement Self-Sensing Measurement for a 2-DOF Piezoelectric Cantilevered Actuator

2017

This paper proposes a self-sensing measurement technique to perform the precise estimation of the displacements along two axes in a two-degrees-of-freedom (2-DOF) piezoelectric actuator. For that, a new electrical circuit scheme that permits charge amplification is first proposed to match the different electrodes combination of the 2-DOF actuator. Then, a new bivariable observer that precisely estimates the displacements is calculated and implemented experimentally in a cascade with the electrical circuit to complete the self-sensing. The experimental tests and results verification with external sensors revealed that the measured displacements given by the developed self-sensing measurement…

0209 industrial biotechnologyEngineeringCantileverObserver (quantum physics)business.industry020208 electrical & electronic engineering02 engineering and technologyPiezoelectricityDisplacement (vector)law.invention020901 industrial engineering & automationControl and Systems EngineeringlawCascadeControl theoryElectrical network0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringActuatorbusinessQuasistatic processIEEE Transactions on Industrial Electronics
researchProduct

A unified observer for robust sensorless control of DC–DC converters

2017

Abstract Due to the large variety of converters' configurations, many different sensorless controllers are available in the literature, each one suited for a particular converter. The need for different configurations, especially on the same power supply, make it clear the advantage of having a shared control algorithm. This paper presents a unified nonlinear robust current observer for buck, boost and buck–boost converters in synchronous and asynchronous configurations. The unified observer speeds up the design, tuning and the implementation, and requires a memory cheaper code, easier to certify. Simulation and experimental results are presented to validate the approach in different scenar…

0209 industrial biotechnologyEngineeringObserver (quantum physics)Control (management)Robust control02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciAsynchronous converters020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringCode (cryptography)Electrical and Electronic Engineeringbusiness.industryApplied Mathematics020208 electrical & electronic engineeringSynchronous convertersControl engineeringConvertersSensorless controlComputer Science ApplicationsPower (physics)Current mode controlNonlinear systemNonlinear observerControl and Systems EngineeringAsynchronous communicationRobust controlbusinessDC–DC converters
researchProduct

Robust Composite Nonlinear Feedback Path-Following Control for Independently Actuated Autonomous Vehicles With Differential Steering

2016

This paper investigates utilizing the front-wheel differential drive-assisted steering (DDAS) to achieve the path-following control for independently actuated (IA) electric autonomous ground vehicles (AGVs), in the case of the complete failure of the active front-wheel steering system. DDAS, which is generated by the differential torque between the left and right wheels of IA electric vehicles, can be utilized to actuate the front wheels as the sole steering power when the regular steering system fails, and thus avoids dangerous consequences for AGVs. As an inherent emergency measure and an active safety control method for the steering system of electric vehicles, DDAS strategy is a valuabl…

0209 industrial biotechnologyEngineeringObserver (quantum physics)business.industryActive safetyEnergy Engineering and Power Technology020302 automobile design & engineeringTransportationControl engineering02 engineering and technologyActive steeringPower (physics)Vehicle dynamicsNonlinear system020901 industrial engineering & automation0203 mechanical engineeringControl theoryAutomotive EngineeringTorqueElectrical and Electronic EngineeringbusinessIEEE Transactions on Transportation Electrification
researchProduct