Search results for "OEL"
showing 10 items of 5270 documents
SiC MOSFET vs SiC/Si Cascode short circuit robustness benchmark
2019
Abstract Nowadays, MOSFET SiC semiconductors short circuit capability is a key issue. SiC/Si Cascodes are compound semiconductors that, in some aspects, show a similar MOSFET behaviour. No interlayer dielectric insulation suggests, in theory, Cascode JFETs as more robust devices. The purpose of this paper is to compare the drift and degradation of two commercial devices static parameters by exposing them to different levels of repetitive 1.5 μs short-circuit campaigns at 85% of its breakdown voltage. Short-circuit time has been set experimentally, and longer times result in catastrophic failure of MOSFET devices due to over self-heating. For this purpose, pre- and post-test short circuit ch…
Selective Band Gap to Suppress the Spurious Acoustic Mode in Film Bulk Acoustic Resonator Structures
2018
In this work, we investigate numerically the propagation of Lamb waves in a film bulk acoustic resonator (FBAR) structure formed by piezoelectric ZnO layer sandwiched between two Mo electrodes coupled with Bragg reflectors; the system is thus considered as a phononic-crystal (PnC) plate. The aim is to suppress the first-order symmetric Lamb wave mode considered as a spurious mode caused by the establishment of a lateral standing wave due to the reflection at the embedded lateral extremities of the structure; this spurious mode is superposing to the main longitudinal mode resonance of the FBAR. The finite element study, using harmonic and eigen-frequency analyses, is performed on the section…
2018
Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ell…
Emerging blue-UV luminescence in cerium doped YAG nanocrystals
2016
Physica status solidi / Rapid research letters 10(6), 475 - 479(2016). doi:10.1002/pssr.201600041
Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes
2019
We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…
Guiding and splitting Lamb waves in coupled-resonator elastic waveguides
2018
Abstract We investigate experimentally Lamb wave propagation in coupled-resonator elastic waveguides (CREWs) formed by a chain of cavities in a two-dimensional phononic crystal slab with cross holes. Wide complete bandgaps, extending from 53 to 88 kHz, are first measured in a finite phononic crystal slab sample. A straight waveguide and a wave splitting circuit with 90° bends are then designed, fabricated and measured. Elastic Lamb waves are excited by a piezoelectric patch attached to one side of the phononic slab and detected using a scanning vibrometer. Strongly confined guiding and splitting at waveguide junctions are clearly observed for several guided waves. Numerical simulations are …
Multi-pulse characterization of trapping/detrapping mechanisms in AlGaN/GaN high electromobility transistors
2019
GaN high-electro mobility transistors (HEMTs) are among the most promising candidates for use in high-power, high-frequency, and high-temperature electronics owing to their high electrical breakdown threshold and their high saturation electron velocity. The applications of these AlGaN/GaN HEMTs in power converters are limited by the surface trapping effects of drain-current collapse. Charge-trapping mechanisms affect the dynamic performance of all GaN HEMTs used in power switching applications. This study analyzes the dynamic resistance of GaN HEMTs and finds that the effects of dynamic resistance can be suppressed by controlling switching conditions and on-off cycles.
Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source
2015
Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed
Power efficiency improvements with the radio frequency H− ion source
2016
CW 13.56 MHz radio frequency-driven H(-) ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H(-) beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation …
Measuring rain energy with the employment of “Arduino”
2016
This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Diverse studies agree on the possibility of generating electricity from rainfall, but to date, a study that can measure the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes — to measure the energy produced from a single raindrop — and concludes with an ad hoc Arduino-based measuring system, aimed at measuring the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to r…