Search results for "OLED"
showing 10 items of 349 documents
A review of investigation on 4-substituted 1,8-naphthalimide derivatives
2020
DG acknowledges to the ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/177. We are grateful to J. V. Grazulevičius for the valuable comments on the manuscript.
New Electroactive Polymers with Electronically Isolated 4,7-Diarylfluorene Chromophores as Positive Charge Transporting Layer Materials for OLEDs
2021
The OLED materials were developed in the frame of project funded by the Research Council of Lithuania (grant No. S-LLT-19-2). B.Z. is thankful to the National Natural Science Foundation of China (No. 51773195), and the Research & Development Projects in Key Areas of Guangdong Province, China (No. 2019B010933001). We are also obliged to D. Volyniuk for measurements of the ionization potentials.
Highly phosphorescent perfect green emitting iridium(iii) complex for application in OLEDs.
2007
A novel iridium complex, [bis-(2-phenylpyridine)(2-carboxy-4-dimethylaminopyridine)iridium(III)] (N984), was synthesized and characterized using spectroscopic and electrochemical methods; a solution processable OLED device incorporating the N984 complex displays electroluminescence spectra with a narrow bandwidth of 70 nm at half of its intensity, with colour coordinates of x = 0.322; y = 0.529 that are very close to those suggested by the PAL standard for a green emitter. Bolink, Henk, Henk.Bolink@uv.es ; Coronado Miralles, Eugenio, Eugenio.Coronado@uv.es ; Garcia Santamaria, Sonsoles Amor, Sonsoles.Garcia@uv.es
2015
Two novel charged organic thermally activated delayed fluorescence (TADF) emitters, 1 and 2, have been synthesized. Their TADF behavior is well-supported by the multiexponential decay of their emission (nanosecond and microsecond components) and the oxygen dependence of the photoluminescence quantum yields. Spin-coated electroluminescent devices have been fabricated to make light-emitting electrochemical cells (LEECs) and organic light-emitting diodes (OLEDs). The first example of a non-doped charged small organic molecule LEEC is reported and exhibited an external quantum efficiency (EQE) of 0.39% using 2. With a multilayer architecture, a solution-processed OLED device using neat 2 as the…
Solution-processable green phosphorescent iridium(III) complexes bearing 3,3,3-triphenylpropionic acid fragment for use in OLEDs
2018
New solution-processable materials based on well-known green iridium(III) heteroleptic complexes (ppy) 2 Ir(acac) and (ppy) 2 Ir(pic) were acquired by chemical modification of ppy ligand with functionable hydroxyl groups and subsequent esterification with 3,3,3-triphenylpropionic acid fragment. Photoluminescence quantum efficiencies up to 0.90 were measured for the compounds in solution. Emission characteristics in pure solid films and different guest-host systems with hole transporting materials were investigated. Green light emitting OLEDs (organic light emitting devices) was prepared and characterized.
Conductive cooling in white organic light emitting diode for enhanced efficiency and life time
2015
We demonstrate white organic light emitting diodes with enhanced efficiency (26.8 lm/W) and life time (∼11 000 h) by improved heat dissipation through encapsulation composed of a metal (Cu, Mo, and Al) and mica sheet joined using thermally conducting epoxy. Finite element simulation is used to find effectiveness of these encapsulations for heat transfer. Device temperature is reduced by about 50% with the encapsulation. This, consequently, has improved efficiency and life time by about 30% and 60%, respectively, with respect to glass encapsulation. Conductive cooling of device is suggested as the possible cause for this enhancement.
Phosphine oxide functionalized pyrenes as efficient blue light emitting multifunctional materials for organic light emitting diodes
2015
In a search for blue light emitting multifunctional materials, the electron transport enhancing diphenyl phosphine–oxide (Ph2PO) group has been appended to blue light emitting pyrene derivatives. This design, we observe, leads to highly efficient electron transporting blue-emitters for non-doped organic light emitting devices (OLEDs) with good film formation characteristics. The superior performance is attributed to enhanced charge transport and formation of pyrene excimers assisted by thermally activated delayed fluorescence (TADF) in the device. We report the synthesis and characterization using experimental and computational methods of six such pyrene derivatives. Although three of these…
Pyranylidene indene-1,3-dione derivatives as an amorphous red electroluminescence material
2011
The organic light-emitting diode (OLED) has promising applications in flat-panel displays and novel light sources. Thus far, OLED structures have mostly been made by thermal evaporation in vacuum. An alternative approach is to use small molecules that form amorphous (glassy) structures from solutions. Such compounds can be used in ink-jet printing technologies and result in reduced OLED prices. We present an original red fluorescent organic compo- und 2-(2-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-6-methyl-4H-pyran-4-ylidene)-1H-indene-1, 3(2H)-dione (ZWK1), and its derivative 2-(2,6-bis(4-(bis(2-(trityloxy)ethyl) amino)styryl)-4H- pyran-4-ylidene)-1H-indene-1,3(2H)-dione (ZWK2), where the m…
Photochemical synthesis of pyrene perfluoroalkyl derivatives and their embedding in a polymethylmethacrylate matrix: a spectroscopic and structural s…
2014
A photochemical, alternative and eco-compatible approach to perfluoroalkyl derivatives of pyrene is presented. The perfluoroalkyl chain is regiospecifically introduced at the 1 position of pyrene. The synthesized products have been embedded in a polymethylmethacrylate matrix by photocuring at 365 nm. Both the photochemical reactions can be considered a “green tool” for the synthetic chemist in order to obtain materials with prospective optoelectronic applications. The so-obtained composites have been the object of a study by UV and fluorescence spectroscopy in order to explore their luminescence properties. The small angle X-ray scattering and the transmission electron microscopy techniques…
Photophysical and electroluminescence properties of bis(2′,6′-difluoro-2,3′-bipyridinato-N,C4′)iridium(picolinate) complexes: effect of electron-with…
2015
Herein, we have synthesized a series of 2′,6′-difluoro-2,3′-bipyridine cyclometalating ligands by substituting electron-withdrawing (–CHO, –CF3, and –CN) and electron-donating (–OMe and –NMe2) groups at the 4′ position of the pyridyl moiety and utilized them for the construction of five new iridium(III) complexes (Ir1–Ir5) in the presence of picolinate as an ancillary ligand. The photophysical properties of the developed iridium(III) compounds were investigated with a view to understand the substituent effects. The strong electron-withdrawing (–CN) group containing the iridium(III) compound (Ir3) exhibits highly efficient genuine green phosphorescence (λmax = 508 nm) at room temperature in …