Search results for "OPTICS"
showing 10 items of 10033 documents
Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties
2012
In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…
Neutron scattering and imaging: a tool for archaeological studies
2015
International audience; Neutron scattering and neutron imaging are powerful techniques for studying the structure of objects without damage, which is an essential prerequisite for investigations in Cultural Heritage domain, particularly in Archaeology. The deep penetration of neutrons in most materials allows for the study of relatively large objects. The contrast between similar materials, like metals in alloys, or that due to the presence of hydrogen atoms gives information about the internal structure of objects that have been modified or repaired in the past. Imaging and tomography give a 3-dimensional view of the whole object, permitting discrimination between different parts of the ob…
High-frequency electrodeless lamps in argon–mercury mixtures
2005
In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…
Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels
2018
Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…
Integral-Imaging display from stereo-Kinect capture
2017
In this paper, we propose a new approach in order to improve the quality of microimages and display them onto an integral imaging monitor. Our main proposal is based on the stereo-hybrid 3D camera system. Originally, hybrid camera system has dissimilarity itself. We interpret our method in order to equalize the hybrid sensor's characteristics and 3D data modification strategy. We generate integral image by using synthetic back-projection mapping method. Finally, we project the integral image onto our proposed display system. We illustrate this procedure with some imaging experiments in order to prove an advantage of our approach.
Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage
2016
Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.
Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy
2019
International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…
Object size effect on the contact potential difference measured by scanning Kelvin probe method
2010
International audience; Contact potential difference (CPD) was measured by macroscopic Kelvin probe instrument and scanning Kelvin probe microscope on Al, Ni and Pt on ITO substrates at ambient conditions. CPD values measured by scanning Kelvin probe microscope and macroscopic Kelvin probe are close within the error of about 10-30% for large studied objects, whereas scanning Kelvin probe microscope signal decreases, when the object size becomes smaller than 1.4 m. CPD and electric field signals measured using many-pass technique allowed us to estimate the influence of electrostatic field disturbance, especially, in the case of small objects.
New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation.
2010
Abstract Anatase and rutile Ti- L 2,3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L 3 band of both rutile and anatase. The data suggest that new peaks also exist in the L 2 e g band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculation…
Binocular function measures as predictors of user performance in stereoscopic augmented reality
2021
Inconsistency between the binocular and focus cues in stereoscopic augmented reality overburdens the visual system leading to its stress. However, a high individual variability of tolerance for visual stress makes it difficult to predict and generalize the user gain associated with the implementation of alternative visualization technologies. In this study, we investigated the relationship between the binocular function and perceptual judgments in augmented reality. We assessed the task completion time and accuracy of perceptual distance matching depending on the consistency of binocular and focus cues in the stereoscopic environment of augmented reality. The head-mounted display was driven…