Search results for "OXIDE"
showing 10 items of 6424 documents
Ab initio modelling of the Y, O, and Ti solute interaction in fcc-Fe matrix
2018
Abstract Strengthening of the ODS steels by Y2O3 precipitates permits to increase their operation temperature and radiation resistance, which is important in construction materials for future fusion and advanced fission reactors. Both size and spatial distribution of oxide particles significantly affect mechanical properties and radiation resistance of ODS steels. Addition of the Ti species (present also as a natural impurity atoms in iron lattice) in the particles of Y2O3 powder before their mechanical alloying leads to the formation of YTiO3, Y2TiO5, and Y2Ti2O7 nanoparticles in ODS steels. Modelling of these nanoparticle formation needs detailed knowledge of the energetic interactions be…
Accumulation of radiation defects and modification of micromechanical properties under MgO crystal irradiation with swift 132Xe ions
2020
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. A.A. also acknowledges support via the project GF AP05134257 of Ministry of Education and Science of the Republic of Kazakhstan .
Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics
2010
Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity…
Controlled Cytotoxicity of Plasma Treated Water Formulated By Open-air Hybrid Mode Discharge
2017
Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains urn:x-wiley:14381656:media:ppap201600207:ppap201600207-math-0006 and urn:x-wiley:14381656:media:ppap201600207:ppap201600207-math-0007, while urn:x-wiley:14381656:media:ppap201600207:ppap201600207-math-0008and urn:x-w…
A graphene-based neutral particle detector
2019
A neutral particle detector is presented, in which the traditionally used target material, indium tin oxide (ITO), is replaced by graphene. The graphene-based detector enables collinear photodetachment measurements at a significantly shorter wavelength of light down to 230 nm compared to ITO-based detectors, which are limited at 335 nm. Moreover, the background signal from the photoelectric effect is drastically reduced when using graphene. The graphene based detector, reaching 1.7 eV further into the UV energy range, allows increased possibilities for photodetachment studies of negatively charged atoms, molecules, and clusters.A neutral particle detector is presented, in which the traditio…
Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy
2019
The low-frequency noise in a nanometer-sized virtual memristor consisting of a contact of a conductive atomic force microscope (CAFM) probe to an yttria stabilized zirconia (YSZ) thin film deposited on a conductive substrate is investigated. YSZ is a promising material for the memristor application since it is featured by high oxygen ion mobility, and the oxygen vacancy concentration in YSZ can be controlled by varying the molar fraction of the stabilizing yttrium oxide. Due to the low diameter of the CAFM probe contact to the YSZ film (similar to 10nm), we are able to measure the electric current flowing through an individual filament both in the low resistive state (LRS) and in the high r…
Controlled thermal oxidation of nanostructured vanadium thin films
2016
Abstract Pure V thin films were dc sputtered with different pressures (0.4 and 0.6 Pa) and particle incident angles α of 0°, 20° and 85°, by using the GLancing Angle Deposition (GLAD) technique. The sputtered films were characterized regarding their electrical resistivity behaviour in atmospheric pressure and in-vacuum conditions as a function of temperature (40–550 °C), in order to control the oxidation process. Aiming at comprehending the oxidation behaviour of the samples, extensive morphological and structural studies were performed on the as-deposited and annealed samples. Main results show that, in opposition to annealing in air, the columnar nanostructures are preserved in vacuum con…
Long term stability testing of oxide unicouple thermoelectric modules
2019
Thermoelectric devices based on oxides are good candidates for energy harvesting technologies for use in aggressive conditions where the materials should withstand high temperatures and corrosive environments over prolonged time. This leads to a natural concern for the stability of the electrical contacts, especially on the hot side of the module. In this work, we have assembled several prototype unicouple thermoelectric modules made by pyrolyzed and spark plasma sintered n-type CaMnO3 and p-type Ca3Co4O9 and then tested under different conditions mimicking end-user applications. For baseline experiments we have chosen to use nickel as the contact material in order to show the effect of its…
Atomic layer deposition of aluminum oxide on modified steel substrates
2016
Abstract Al 2 O 3 thin films were grown by atomic layer deposition to thicknesses ranging from 10 to 90 nm on flexible steel substrates at 300 °C using Al(CH 3 ) 3 and H 2 O as precursors. The films grown to thicknesses 9–90 nm covered the rough steel surfaces uniformly, allowing reliable evaluation of their dielectric permittivity and electrical current densities with appreciable contact yield. Mechanical behavior of the coatings was evaluated by nanoindentation. The maximum hardness values of the Al 2 O 3 films on steel reached 12 GPa and the elastic modulus exceeded 280 GPa.
Matrix isolation and quantum chemical studies on the H2O2–SO2complex
2004
Complexation and photochemical reactions of hydrogen peroxide and sulfur dioxide have been studied in solid Ar, Kr and Xe. Complexes between H2O2 and SO2 are characterized using Fourier transform infrared spectroscopy and ab initio calculations. In solid Ar, the H2O2–SO2 complex absorptions are found at wavenumbers of 3572.8, 3518.7, 3511.2, 3504.3, 1340.3, 1280.2 and 1149.9 cm−1. In Kr and Xe matrices, the bonded OH stretching frequencies deviate from the values in Ar, and we propose that the matrix surrounding influences the structure of the H2O2–SO2 complex. UV photolysis of the H2O2–SO2 was also studied in solid Ar, Kr and Xe. This photolysis produces mainly a complex between sulfur tri…