Search results for "Operator algebra"

showing 10 items of 89 documents

On spectra of geometric operators on open manifolds and differentiable groupoids

2001

We use a pseudodifferential calculus on differentiable groupoids to obtain new analytical results on geometric operators on certain noncompact Riemannian manifolds. The first step is to establish that the geometric operators belong to a pseudodifferential calculus on an associated differentiable groupoid. This then leads to Fredholmness criteria for geometric operators on suitable noncompact manifolds, as well as to an inductive procedure to compute their essential spectra. As an application, we answer a question of Melrose on the essential spectrum of the Laplace operator on manifolds with multicylindrical ends.

Discrete mathematicsPure mathematicsHigher-dimensional algebraMathematics::Operator AlgebrasGeneral MathematicsEssential spectrumMathematics::Spectral TheoryOperator theoryCompact operatorQuasinormal operatorMathematics::K-Theory and HomologyDouble groupoidMathematics::Differential GeometryDifferentiable functionMathematics::Symplectic GeometryLaplace operatorMathematicsElectronic Research Announcements of the American Mathematical Society
researchProduct

*-Representations, seminorms and structure properties of normed quasi*-algebras

2008

The class of -representations of a normed quasi -algebra (X;A0) is in- vestigated, mainly for its relationship with the structure of (X;A0). The starting point of this analysis is the construction of GNS-like -representations of a quasi -algebra (X;A0) dened by invariant positive sesquilinear forms. The family of bounded invariant positive sesquilinear forms denes some seminorms (in some cases, C -seminorms) that provide useful information on the structure of (X;A0) and on the continuity properties of its -representations. 1. Introduction. A quasi -algebra is a couple (X;A0), where X is a vector space with involution , A0 is a -algebra and a vector subspace of X, and X is an A0-bimodule who…

Discrete mathematicsPure mathematicsMathematics::Operator AlgebrasGeneral MathematicsBounded functionInvariant (mathematics)Linear subspaceMathematicsVector spaceStudia Mathematica
researchProduct

On the Toeplitz algebras of right-angled and finite-type Artin groups

1999

The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute and which do not. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. As a consequence the Toeplitz algebras of these groups are universal for covariant isometric representations on Hilbert space, and their representations are faithful if the isometries satisfy a properness condition given by Laca and Raeburn. An application of this to right-angled Artin groups gives a uniqueness theorem …

Discrete mathematicsPure mathematicsToeplitz algebraMathematics::Operator AlgebrasGeneral Mathematics46L55Mathematics - Operator Algebras20F36Artin's conjecture on primitive rootsArtin approximation theoremFree productArtin L-functionFOS: MathematicsArtin groupArtin reciprocity law46L55; 20F36Operator Algebras (math.OA)Graph productMathematics
researchProduct

Representable linear functionals on partial *-algebras

2012

A GNS-like *-representation of a partial *-algebra \({{\mathfrak A}}\) defined by certain representable linear functionals on \({{\mathfrak A}}\) is constructed. The study of the interplay with the GNS construction associated with invariant positive sesquilinear forms (ips) leads to the notions of pre-core and of singular form. It is shown that a positive sesquilinear form with pre-core always decomposes into the sum of an ips form and a singular one.

Discrete mathematicsPure mathematicsrepresentationSesquilinear formMathematics::Operator AlgebrasGeneral MathematicsSingular formMathematics - Operator AlgebrasFOS: Physical sciencesMathematical Physics (math-ph)partial *-algebrasSettore MAT/05 - Analisi Matematicapositive linear functionalFOS: MathematicsInvariant (mathematics)Mathematics::Representation TheoryOperator Algebras (math.OA)Settore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics
researchProduct

On operads, bimodules and analytic functors

2017

We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.

General Mathematics0102 computer and information sciences01 natural sciencesMathematics::Algebraic TopologyQuantitative Biology::Cell BehaviorMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics::Category Theory18D50 55P48 18D05 18C15FOS: MathematicsAlgebraic Topology (math.AT)Category Theory (math.CT)Mathematics - Algebraic Topology0101 mathematicsMathematicsFunctorOperad bimodule analytic functor bicategoryTheoryMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsOrder (ring theory)Mathematics - Category Theory16. Peace & justiceBicategoryAlgebraCartesian closed category010201 computation theory & mathematicsBimodule
researchProduct

Fundamental isomorphism theorems for quantum groups

2017

The lattice of subgroups of a group is the subject of numerous results revolving around the central theme of decomposing the group into "chunks" (subquotients) that can then be compared to one another in various ways. Examples of results in this class would be the Noether isomorphism theorems, Zassenhaus' butterfly lemma, the Schreier refinement theorem for subnormal series of subgroups, the Dedekind modularity law, and last but not least the Jordan-H\"older theorem. We discuss analogues of the above-mentioned results in the context of locally compact quantum groups and linearly reductive quantum groups. The nature of the two cases is different: the former is operator algebraic and the latt…

General MathematicsGroup Theory (math.GR)01 natural sciences0103 physical sciencesMathematics - Quantum AlgebraQuantum no-deleting theoremFOS: MathematicsQuantum Algebra (math.QA)Compact quantum groupLocally compact space0101 mathematicsOperator Algebras (math.OA)MathematicsZassenhaus lemmaLocally compact quantum group010102 general mathematicsMathematics - Operator AlgebrasFunctional Analysis (math.FA)AlgebraMathematics - Functional Analysis46L89 46L85 46L52 16T20 20G42Isomorphism theoremQuantum algorithmSchreier refinement theorem010307 mathematical physicsMathematics - Group Theory
researchProduct

The dyon charge in noncommutative gauge theories

2007

We present an explicit classical dyon solution for the noncommutative version of the Yang-Mills-Higgs model (in the Prasad-Sommerfield limit) with a tehta term. We show that the relation between classical electric and magnetic charges also holds in noncommutative space. Extending the Noether approach to the case of a noncommutative gauge theory, we analyze the effect of CP violation at the quantum level, induced both by the theta term and by noncommutativity and we prove that the Witten effect formula for the dyon charge remains the same as in ordinary space.

High Energy Physics - TheoryComputer Science::Machine LearningCiencias FísicasGeneral Physics and AstronomyFOS: Physical sciencesSpace (mathematics)Computer Science::Digital LibrariesStatistics::Machine Learningsymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryMathematics::Quantum AlgebraGauge theoryLimit (mathematics)Ciencias ExactasMathematical physicsPhysicsnoncommutative gauge theoryMathematics::Operator AlgebrasHigh Energy Physics::PhenomenologyFísicaCharge (physics)Noncommutative geometryDyonHigh Energy Physics - Theory (hep-th)Computer Science::Mathematical SoftwaresymbolsCP violationNoether's theorem
researchProduct

Hopf algebras, renormalization and noncommutative geometry

1998

We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of transverse index theory for foliations.

High Energy Physics - TheoryPhysicsMathematics::Rings and AlgebrasMathematics - Operator AlgebrasFOS: Physical sciencesStatistical and Nonlinear PhysicsHopf algebraNoncommutative geometryRenormalizationHigh Energy Physics - Theory (hep-th)Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Operator Algebras (math.OA)Mathematical PhysicsMathematical physics
researchProduct

Instanton Counting, Quantum Geometry and Algebra

2020

The aim of this memoir for "Habilitation \`a Diriger des Recherches" is to present quantum geometric and algebraic aspects of supersymmetric gauge theory, which emerge from non-perturbative nature of the vacuum structure induced by instantons. We start with a brief summary of the equivariant localization of the instanton moduli space, and show how to obtain the instanton partition function and its generalization to quiver gauge theory and supergroup gauge theory in three ways: the equivariant index formula, the contour integral formula, and the combinatorial formula. We then explore the geometric description of $\mathcal{N} = 2$ gauge theory based on Seiberg-Witten geometry together with it…

High Energy Physics - TheoryQuiver gauge theoryThéorie de jauje de carquoisHigh Energy Physics::Lattice[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesQuiver W-algebraqq-characterW-algébre de carquoisHigh Energy Physics::TheorySupergroupgauge theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]InstantonMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Representation Theory (math.RT)Algébre vertexComputingMilieux_MISCELLANEOUSMathematical PhysicsSeiberg–Witten geometryIntegrable systemqq-caractéreVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::PhenomenologyMathematical Physics (math-ph)Localization équivarianteGéométrie de Seiberg–WittenHigh Energy Physics - Theory (hep-th)Théoriede jauje de supergroupe[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Systèmes intégrablesEquivariant localizationMathematics - Representation Theory
researchProduct

Integrating over quiver variety and BPS/CFT correspondence

2019

We show the vertex operator formalism for the quiver gauge theory partition function and the $qq$-character of highest-weight module on quiver, both associated with the integral over the quiver variety.

High Energy Physics - Theorypartition function[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesalgebraSupersymmetric gauge theoryQuiver variety[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics - Quantum AlgebraInstantonFOS: MathematicsQuantum Algebra (math.QA)Representation Theory (math.RT)Mathematics::Representation Theoryfield theory: conformalVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]W-algebraMathematics::Rings and Algebras[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]operator: vertexgauge field theory: quiverConformal field theoryHigh Energy Physics - Theory (hep-th)BPS[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]instantonsMathematics - Representation Theory
researchProduct