Search results for "Oxylipin"
showing 10 items of 19 documents
Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…
2017
The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…
METABOLIC PROMOTERS AFFECT YIELD AND FRUIT QUALITY OF 'SANFILIPPARA' AND 'TRABIA' LOQUAT
2015
Preliminary field trials with foliar applications of phenylalanine, methionine, oxylipins and sugars have shown improvements of external color, sugar content and uniformity of maturation in grapes, pome fruits, tomatoes and melons. In this study, we hypothesized that similar improvements could be obtained both in fruit of âTrabiaâ and âSanfilipparaâ loquat (Eriobotrya japonica Lindl.) with applications of a commercial formulate called Sunred (Biolchim, Bologna, Italy) and containing various concentrations of the above metabolic promoters. The study was conducted on 12 âSanfilipparaâ and 12 âTrabiaâ adult loquat trees grown in an orchard near Palermo, Italy. Half of the trees…
Absence of endo-1,4-β-glucanase KOR1 alters the Jasmonate-dependent defence response to Pseudomonas syringae in Arabidopsis
2014
During plant-pathogen interactions, the plant cell wall forms part of active defence against invaders. In recent years, cell wall-editing enzymes, associated with growth and development, have been related to plant susceptibility or resistance. Our previous work identified a role for several tomato and Arabidopsis endo-1,4-β-glucanases (EGs) in plant-pathogen interactions. Here we studied the response of the Arabidopsis thaliana T-DNA insertion mutant lacking EG Korrigan1 (KOR1) infected with Pseudomonas syringae. KOR1 is predicted to be an EG which is thought to participate in cellulose biosynthesis. We found that kor1-1 plants were more susceptible to P. syringae, and displayed severe dise…
A β-1,3 Glucan Sulfate Induces Resistance in Grapevine against Plasmopara viticola Through Priming of Defense Responses, Including HR-like Cell Death
2008
Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybri…
Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation
2004
Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously characterized as elicitin receptors, and is shown to be involved in the activation of plant defense. The biological properties of this LTP1 were compared with those of LTP1-linolenic and LTP1-jasmonic acid…
LC-ESI/HRMS analysis of glucosinolates, oxylipins and phenols in Italian rocket salad (Diplotaxis erucoides subsp. erucoides (L.) DC.) and evaluation…
2021
BACKGROUND: This study investigated the chemical profile and biological activity of Diplotaxis erucoides subsp. erucoides (L.) DC. (Brassicaceae) collected in Sicily (Italy). RESULTS: Liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry (LC-ESI/HRMS) analysis of the ethanol extract revealed the presence of 42 compounds – glucosinolates, hydroxycinnamic acids, flavonoids, and oxylipins. The extract was tested for its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), ferric reducing ability power (FRAP), and β-carotene bleaching tests. Promising protection from lipid peroxi…
Effect of metabolic promoters on yeld and fruit quality of 'Sanfilippara' and 'Trabia' loquat.
2014
Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea
2011
Abstract Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses. Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1 , were unable …
Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen int…
2013
Plant cell wall modification is a critical component in stress responses. Endo-1,4-β-glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence-signalling network. A study of a set of Arabidopsis EG T-DNA insert…
Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis …
2015
Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is requ…