Search results for "PGP"

showing 10 items of 27 documents

Pre- and syn-eruptive geochemistry of volcanic gases from Soufriere Hills of Montserrat, West Indies

1998

International audience; Soufriere Hills fumaroles contained magmaderived volatiles before and during the eruption initiated in 1995 but also preserved a typical and quite steady hydrothermal coinposition. Chemical changes due to increased boiling and a greater input of oxidizing magmatic gas occurred only at Galway's Soufriere, the most active fumarolic field. Hydrothermal buffering of the fumaroles has been favoured by their remote location (!-2 km) froin the eruptive vents and by a preferential degassing of the uprising magma through intrusive conduits under the crater. High temperature (720øC) gas collected froin the extruding lava dome in Feb. 1996 was chemically and isotopically repres…

010504 meteorology & atmospheric sciencesLava75252 Paris cedex 05GeochemistryLSCEitaly (e-mail: pare!io010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationBritish Geological SurveyVolcanic Gaseslsce.saclay.cea.ff) PalermoCEA-CNRSImpact craterevent[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment0105 earth and related environmental sciencesevent.disaster_type[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereLGSCFrance (semetg?)ipgp.j ussieu.t¾). -SS.R. YoungLava domeIPGPFumaroleGeophysics4 place JussieuDomoMagmambox.unipa.it). 4M.p. SemetGeneral Earth and Planetary Sciences91190 GiftYvette2p. Ailard and P. Jean-BaptisteFrance (e-mail: ailardGeology
researchProduct

Nitric oxide: a multitask player in plant–microorganism symbioses

2016

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partner…

0106 biological sciences0301 basic medicineMicroorganism[SDV]Life Sciences [q-bio]LichenBiology01 natural sciencesRhizobia03 medical and health sciencesinteraction microorganisme végétalSymbiosisNitrogen fixationnitric oxideBotanyPlant symbiosisMycorrhizamicrobiologieLichenoxyde nitriqueObligateEcologyHost (biology)fungifood and beveragesbiology.organism_classificationsymbiosisLegume030104 developmental biologyNitrogen fixationPlant growth-promoting rhizobia (PGPR)MycorrhizasymbioseLegume Lichen Mycorrhiza Nitric oxide Nitrogen fixation Plant growth-promoting rhizobia (PGPR) Plant symbiosis Rhizobium010606 plant biology & botanyRhizobium
researchProduct

Editorial: Exploring Plant Rhizosphere, Phyllosphere and Endosphere Microbial Communities to Improve the Management of Polluted Sites

2021

International audience

0106 biological sciences2. Zero hungerMicrobiology (medical)[SDV.EE]Life Sciences [q-bio]/Ecology environmentRhizospherepolluted sitesmicrobial communities04 agricultural and veterinary sciences15. Life on land01 natural sciencesMicrobiologyQR1-502high-throughput sequencing technologiesEditorial13. Climate actionBotany040103 agronomy & agricultureplant growth promoting microorganisms (PGPM)0401 agriculture forestry and fisheriesEnvironmental sciencehighthroughput sequencing technologiesPhyllosphereplant inoculationComputingMilieux_MISCELLANEOUS010606 plant biology & botanyFrontiers in Microbiology
researchProduct

Fertigation Management and Growth-Promoting Treatments Affect Tomato Transplant Production and Plant Growth after Transplant

2020

Plant biostimulants are of interest as they can stimulate plant growth and increase resource utilization. There is still no information on the use of plant growth-promoters under variable nutritional conditions in the nursery and the effects on tomato seedling growth and plant performance after transplant. This study aimed to evaluate the suitability of gibberellic acid (GA3) or bacterial biostimulant treatments to enhance the growth and quality of greenhouse-grown tomato (Solanum lycopersicum &lsquo

0106 biological sciencesFertigationPlant growthvegetable nurserypre-transplanting nutritional conditioningSettore AGR/04 - Orticoltura E Floricolturaengineering.materialpost-transplant growth01 natural sciencestransplant productionlcsh:Agriculturechemistry.chemical_compoundNutrientbacterial biostimulantGibberellic acidbiologyInoculationSolanum lycopersicum ‘Marmande’ tomato seedlings vegetable nursery transplant production pre-transplanting nutritional conditioning bacterial biostimulant Bacillus spp. PGPR gibberellic acid post-transplant growthfungilcsh:Sfood and beverages04 agricultural and veterinary sciencesbiology.organism_classificationHorticulturetomato seedlingschemistrySeedling<i>Solanum lycopersicum</i> ‘Marmande’PGPR040103 agronomy & agricultureengineering0401 agriculture forestry and fisheriesFertilizerSolanum<i>Bacillus</i> spp.Agronomy and Crop Sciencegibberellic acid010606 plant biology & botany
researchProduct

Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants

2021

Vegetable plants are more sensitive to salt stress during the early growth stages

0106 biological sciencesNurseryMicroorganismMicroorganism<i>Lactuca sativa</i> L.SeedlingBiomassArbuscular mycorrhizal fungi<i>Solanum lycopersium</i> L.Vegetable<i>Trichoderma</i>01 natural sciences03 medical and health sciencesSalt streSolanum lycopersium L.microorganismsGlomus030304 developmental biologysalt stressTrichoderma0303 health sciencesbiologyBrackish waterInoculationSfungifood and beveragesAgriculturebiology.organism_classificationSalinityHorticultureSeedlingTrichodermaPGPRLactuca sativa L.Agronomy and Crop Science010606 plant biology & botany
researchProduct

The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholde…

2014

International audience; The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H2O2 production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2…

0106 biological sciencesPhysiologyBurkholderia phytofirmans[SDV]Life Sciences [q-bio]flg22ArabidopsisColony Count MicrobialPlant Sciencemedicine.disease_cause01 natural sciencesEpitopesArabidopsisEndophytesArabidopsis thalianaPlant ImmunityVitisDisease ResistancePlant Proteins0303 health sciencesbiologyBurkholderia phytofirmansmicrobe-associated molecular pattern (MAMP)Xanthomonas campestrisPGPR[SDE]Environmental SciencesBotrytispattern recognition receptor (PRR)BurkholderiaMolecular Sequence DataContext (language use)Receptors Cell SurfaceMicrobiology03 medical and health sciencesSpecies Specificitymedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyComputer SimulationAmino Acid Sequenceflagellin sensing030304 developmental biologyPlant DiseasesfungiCell MembraneGenetic Complementation TestPathogenic bacteriabiology.organism_classificationVitis viniferaMutationbiology.proteinReactive Oxygen SpeciesFlagellinBacteria010606 plant biology & botanyFlagellinThe New phytologistReferences
researchProduct

Plant growth-promoting rhizobacteria and root system functioning.

2013

International audience; The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR s…

0106 biological sciencesfunctional group[SDV]Life Sciences [q-bio]plant nutritionPlant ScienceReview ArticleRoot hairBiologylcsh:Plant culturephytohormoneRhizobacteria01 natural sciences03 medical and health sciencesplant-PGPR cooperationplant-PGPR cooperation;rhizo-microbiome;rhizosphere;phytohormone;plant nutrition;ISR;functional groupBotanylcsh:SB1-1110Plant breedingISRFunctional group (ecology)2. Zero hungerAbiotic component0303 health sciencesRhizosphereBiotic component030306 microbiologybusiness.industryfungifood and beveragesrhizo-microbiome15. Life on landBiotechnologyLateral root branchingbusinessrhizosphere010606 plant biology & botanyFrontiers in plant science
researchProduct

Alleviation of Salt Stress by Plant Growth-Promoting Bacteria in Hydroponic Leaf Lettuce

2020

Mediterranean areas with intensive agriculture are characterized by high salinity of groundwater. The use of this water in hydroponic cultivations can lead to nutrient solutions with an electrical conductivity that overcomes the tolerance threshold of many vegetable species. Plant growth-promoting rhizobacteria (PGPR) were shown to minimize salt stress on several vegetable crops but the studies on the application of PGPR on leafy vegetables grown in hydroponics are rather limited and have not been used under salt stress conditions. This study aimed to evaluate the use of plant growth-promoting bacteria to increase the salt tolerance of leaf lettuce grown in autumn and spring in a floating s…

0106 biological sciencessaline waterBiomassSettore AGR/04 - Orticoltura E Floricolturanutrient solutionBiologyRhizobacteria01 natural scienceslcsh:Agriculturefloating systemNutrientbacterial biostimulantleafy vegetables<i>Lactuca sativa</i> L. var. <i>Crispa</i>Brackish waterfungilcsh:S<i>Bacillus</i>food and beverages04 agricultural and veterinary sciencesHydroponicsbiology.organism_classificationSaline waterSalinityHorticulturePGPRsaline water leafy vegetables Lactuca sativa L. var. Crispa floating system nutrient solution bacterial biostimulant PGPR Bacillus040103 agronomy & agriculture0401 agriculture forestry and fisheriesAgronomy and Crop ScienceBacteria010606 plant biology & botanyAgronomy
researchProduct

Design exploration of aes accelerators on FPGAS and GPUs

2017

The embedded systems are increasingly becoming a key technological component of all kinds of complex tech-nical systems and an exhaustive analysis of the state of the art of all current performance with respect to architectures, design methodologies, test and applications could be very in-teresting. The Advanced Encryption Standard (AES), based on the well-known algorithm Rijndael, is designed to be easily implemented in hardware and software platforms. General purpose computing on graphics processing unit (GPGPU) is an alternative to recongurable accelerators based on FPGA devices. This paper presents a direct comparison between FPGA and GPU used as accelerators for the AES cipher. The res…

AESOpenCLGPGPUAcceleratorFPGA prototyping
researchProduct

Distributed multi-objective optimization methods for shape design using evolutionary algorithms and game strategies

2012

Nash algorithmsfinite element methodGPGPUcomputational fluid dynamicstietotekniikkamatemaattinen optimointidomain decompositionteollinen muotoiluNash gameshape optimizationpeliteoriacompetitive gamesevolutionary algorithmsmuotodistributed optimization
researchProduct