Search results for "POTENTIATION"
showing 10 items of 116 documents
Neurosteroids in the Retina
2003
Steroids may have a powerful role in neuronal degeneration. Recent research has revealed that steroids may influence the onset and progression of some retinal disorders as well as neurodegenerative diseases and, as in brain, they accumulate in the retina via a local synthesis (neurosteroids) and metabolism of blood-circulating steroid hormones. Their crucial role as neurodegenerative and neuroprotective agents has been also upheld in a retinal excitotoxic paradigm. These findings are reviewed especially from the emerging perspective that after an insult local changes in steroidogenic responses and consequent neurosteroid availability might turn out to be offensive or defensive cellular adap…
Serum Response Factor-Mediated Gene Regulation in a Drosophila Visual Working Memory
2013
Summary Background Navigation through the environment requires a working memory for the chosen target and path integration facilitating an approach when the target becomes temporarily hidden. We have previously shown that this visual orientation memory resides in the ellipsoid body, which is part of the central complex in the Drosophila brain. Former analysis of foraging and ignorant mutants have revealed that a hierarchical PKG and RSKII kinase signaling cascade in a subset of the ellipsoid-body ring neurons is required for this type of working memory in flies. Results Here we show that mutants in the ellipsoid body open ( ebo ) gene, which encodes the actin-binding protein Exportin 6, e…
ADIPOSE TISSUE-TARGETED STEM CELL TRANSPLANTATION FOR INSULIN RESISTANCE-RELATED CNS DEFICITS
Compelling evidence indicates that Type 2 Diabetes (T2D) and Alzheimer’s Disease (AD) may possibly share a common pathological origin, but the underlying mechanisms remain poorly understood. T2D is a known risk factor for AD and insulin resistance (hallmark of T2D) has been extensively documented in AD patients. Notably, insulin is important for learning and memory due to its role in LTP and LTD modulation. Adipose tissue (AT) dysfunction is a risk factor for T2D, in fact elevated levels of free fatty acids are prodromal to insulin resistance and have been reported in AD brains, as well. In this study, I used a mouse model (AtENPP1Tg mouse) that recapitulates typical characteristics of huma…
Long-Term Potentiation in Slices from Human Hippocampus
1988
Long-term potentiation (LTP) has been observed in slices from human hippocampi removed for intractable epilepsy using extra- and intracellular recording in vitro. Furthermore the effects of several neuroactive substances with possible relevance for synaptic plasticity was investigated. Human hippocampal neurones in vitro display properties very similar to the respective rodent cells.
FP187MITOCHONDRIAL DYSFUNCTION INDUCED BY TENOFOVIR IN RENAL CELLS. POTENTIATION OF THE EFFECTS BY CO-STIMULATION WITH ANGIOTENSIN II
2015
Long-Term Potentiation in the Neonatal Rat Barrel Cortex In Vivo
2012
Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro . We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo . Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3–P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could b…
Neural contribution to postactivation potentiation
2015
The current study was designed to investigate the contribution of neural factors to postactivation potentiation (PAP). Neuromuscular function (i.e. twitches, H-reflexes, motor evoked potentials, and voluntary isometric ballistic contractions) of 8 power-trained (POW) and 8 endurance-trained (END) athletes was recorded before and after a 8-second maximal isometric conditioning contraction (CC) to induce PAP, to elucidate discriminating neural factors in exploiting PAP that might arise from the former training background compared to the latter. After CC, twitch peak force and rate of force development were significantly increased, with higher potentiation in POW (29 ± 11% and 64 ± 24%) than E…
Extremely Low Frequency Magnetic Fields Do Not Affect LTP-Like Plasticity in Healthy Humans.
2020
Introduction: Several studies explored, in vitro, the biological effects of extremely low-frequency magnetic fields (ELF-MFs) and reported the induction of functional changes in neuronal activity. In particular, ELF-MFs can influence synaptic plasticity both in-vitro and in animal models. Indeed, some studies reported an increase in long-term potentiation (LTP) whereas others suggested its reduction. However, no specific study has investigated such effect in humans. Aims: To evaluate whether ELF-MFs affect the propensity of the human cortex to undergo LTP-like plasticity. Methods: We designed a randomized, single-blind, sham-controlled, cross-over study on 10 healthy subjects. Cortical plas…
Hsp60 Protects against Amyloid β Oligomer Synaptic Toxicity via Modification of Toxic Oligomer Conformation
2019
Alzheimer's disease (AD) is the leading cause of dementia worldwide. While the etiology of AD remains uncertain, neurotoxic effects of amyloid beta oligomers (Aβo) on synaptic function, a well-established early event in AD, is an attractive area for the development of novel strategies to modify or cease the disease's progression. In this work, we tested the protective action of the mitochondrial chaperone Hsp60 against Aβo neurotoxicity, by determining the direct effect of Hsp60 in changing Aβo toxic conformations and thus reducing their dysfunctional synaptic binding and consequent suppression of long-term potentiation. Our data suggest that Hsp60 has a direct impact on Aβo, resulting in a…
Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer’s disease: three partners in cr…
2011
All three cholesterol oxidation products implicated thus far in the pathogenesis of Alzheimer's disease, 7β-hydroxycholesterol, 24-hydroxycholesterol, and 27-hydroxycholesterol, markedly enhance the binding of amyloid-beta (Aβ) to human differentiated neuronal cell lines (SK-N-BE and NT-2) by up-regulating net expression and synthesis of CD36 and β1-integrin receptors. However, only 24-hydroxycholesterol markedly potentiates the pro-apoptotic and pro-necrogenic effects of Aβ(1-42) peptide on these cells: 7β-hydroxycholesterol and 27-hydroxycholesterol, like unoxidized cholesterol, show no potentiating effect. This peculiar behavior of 24-hydroxycholesterol at physiologic concentrations (1 μ…