Search results for "Pharmaceutical Science"
showing 10 items of 2702 documents
Shikonin Prevents Early Phase Inflammation Associated with Azoxymethane/Dextran Sulfate Sodium-Induced Colon Cancer and Induces Apoptosis in Human Co…
2018
Shikonin is the main active principle in the root of Lithospermum erythrorhizon, widely used in traditional Chinese medicine for its anti-inflammatory and wound healing properties. Recent research highlights shikonin's antitumor properties and capacity to prevent acute ulcerative colitis. The aim of the present study was to evaluate the ability of shikonin to prevent, in vivo, the early phases of colorectal cancer development, with special focus on its cytotoxic mechanism in vitro. We employed the azoxymethane/dextran sulfate sodium model of colitis in Balb/C mice. Body weight and drinking were monitored throughout the experiment, and length of colon and lesions of the colon were recorded o…
Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABAA Receptor γ2 Subunit in the …
2016
Endogenous neurosteroids and neuroactive steroids have potent and widespread actions on the brain via inhibitory GABAA receptors. In recombinant receptors and genetic mouse models their actions depend on the α, β, and δ subunits of the receptor, especially on those that form extrasynaptic GABAA receptors responsible for non-synaptic (tonic) inhibition, but they also act on synaptically enriched γ2 subunit-containing receptors and even on αβ binary receptors. Here we tested whether behavioral sensitivity to the neuroactive steroid agonist 5β-pregnan-3α-ol-20-one is altered in genetically engineered mouse models that have deficient GABAA receptor-mediated synaptic inhibition in selected neuro…
Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and arte…
2018
Hybridization of natural products has high potential to further improve their activities and may produce synergistic effects between linked pharmacophores. Here we report synthesis of nine new hybrids of natural products egonol, homoegonol, thymoquinone and artemisinin and evaluation of their activities against P. falciparum 3D7 parasites, human cytomegalovirus, sensitive and multidrug-resistant human leukemia cells. Most of the new hybrids exceed their parent compounds in antimalarial, antiviral and antileukemia activities and in some cases show higher in vitro efficacy than clinically used reference drugs chloroquine, ganciclovir and doxorubicin. Combined, our findings stress the high pot…
Genetics and Gene Therapy of Anderson-Fabry Disease.
2018
Fabry's disease is a genetic disorder of X-linked inheritance caused by mutations in the alpha galactosidase A gene resulting in deficiency of this lysosomal enzyme. The progressive accumulation of glycosphingolipids, caused by the inadequate enzymatic activity, is responsible of organ dysfunction and thus of clinical manifestations. In the presence of a high clinical suspicion, a careful physical examination and specific laboratory tests are required, finally diagnosis of Fabry's disease is confirmed by the demonstration of absence or reduced alpha-galactosidase A enzyme activity in hemizygous men and gene typing in heterozygous females; in fact the performance of enzymatic activity assay …
Nutrient sensing pathways as therapeutic targets for healthy ageing
2017
Introduction: In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the ag…
MPLA-coated hepatitis B virus surface antigen (HBsAg) nanocapsules induce vigorous T cell responses in cord blood derived human T cells.
2016
Chronic hepatitis B virus (HBV) infection is the most prevalent serious liver infection in the world. A frequent route of infection represents mother-to-child transmission. Efficient control of HBV replication depends on antigen-specific cellular immune response mediated by dendritic cells (DCs). Aim of the present study was to evaluate optimized adjuvant combinations, efficiently maturing monocyte-derived neonatal and adult dendritic cells (moDCs). In addition, the potential of polymeric HBsAg-nanocapsules (HBsAg-NCs) was investigated regarding up-take by moDCs and the subsequent induction of specific T cell responses in a human co-culture model. Simultaneous stimulation of moDCs with MPLA…
The Sea Urchin sns5 Chromatin Insulator Shapes the Chromatin Architecture of a Lentivirus Vector Integrated in the Mammalian Genome.
2016
Lentivirus vectors are presently the favorite vehicles for therapeutic gene transfer in hematopoietic cells. Nonetheless, these vectors integrate randomly throughout the genome, exhibiting variegation of transgene expression due to the spreading of heterochromatin into the vector sequences. Moreover, the cis-regulatory elements harbored by the vector could disturb the proper transcription of resident genes neighboring the integration site. The incorporation of chromatin insulators in flanking position to the transferred unit can alleviate both the above-mentioned dangerous effects, due to the insulator-specific barrier and enhancer-blocking activities. In this study, we report the valuable …
Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms
2017
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the deriv…
2021
To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low micromolar range permanently inhibited the infectivity of high doses of enteroviruses (107 PFU/mL). Sucrose gradient separation of radiolabeled viruses, dynamic light scattering, transmission electron microscopic imaging and an in-house developed real-time fluorescence assay revealed that polyphenols prevented infection mainly through clustering of…
Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries.
2017
Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while …