Search results for "Phase"
showing 10 items of 6344 documents
Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectri…
2018
[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…
An exact method for the determination of differential leakage factors in electrical machines with non-symmetrical windings
2016
An exact and simple method for the determination of differential leakage factors in polyphase ac electrical machines with non-symmetrical windings is presented in this paper. The method relies on the properties of Gorges polygons that are used to transform an infinite series expressing the differential leakage factor into a finite sum in order to significantly simplify the calculations. Some examples are shown and discussed in order to practically demonstrate the effectiveness of the proposed method.
High-Power Multicarrier Generation for RF Breakdown Testing
2017
Testing of satellite components for high RF power breakdown effects, such as multipactor and corona or passive-intermodulation, is a topic of growing interest in the aerospaceindustry. Switching fromthe classical single carrier approach to the more realisticmulticarrier scenario is very challenging from the experimental point of view. Themulticarrier signals, amplifiedby several RF power amplifiers, need to have controlled phase, amplitude, and frequency in each carrier. Fine tuning of the signal generator phases is required in order to compensate the phase drift occurring in the active elements of the test bed. This paper presents an efficient and low-cost technique to generate multicarrie…
A fully-digital realtime SoC FPGA based phase noise analyzer with cross-correlation
2017
We report on a fully-digital and realtime operation of a phase noise analyzer using modern digital techniques with cross-correlation. With the advent of system on chip field-programmable gate arrays (SoC FPGAs) embedding hard core central processing unit, coprocessor and FPGA onto a single integrated circuit, the building of sensitive analysis devices for Time & Frequency research is made accessible at virtually no cost and benefits from reconfigurability. Used with high-speed digitizers we have successfully implemented a four-channel system whose preliminary results at 10 MHz shows a residual white noise floor < −185 dBrad2/Hz up to 5 MHz off the carrier, and flicker < −127 dBrad2/Hz using…
Coeval Cold Spray Additive Manufacturing Variances and Innovative Contributions
2017
Tremendous attention has been given to the cold spray process, even more today with the emergence of additive manufacturing, worldwide. Several inventions related to the cold spray technology have been patented for over a century and mostly since a couple of decades. But the cold spray technology knows a period of great innovations due to recent and current substantial explorations. Various technological solutions have been developed. The technical dimension, and particularly in terms of manufacturing method, has also always been a major genesis of progresses and novelties. This chapter is a technological survey of the cold spray additive manufacturing and reports variant methods and innova…
The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges
2017
Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…
Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapo…
2019
Abstract We have analysed the growth, morphological and structural characterization of Cd1-xZnxO thin films grown on r-sapphire substrates by atmospheric pressure metal organic chemical vapour deposition, mainly focusing on the Cd-rich rock-salt phase for its promising optical and technological applications. The evolution of the surface morphology and crystalline properties as a function of Zn content has been studied by means of high resolution x-ray diffraction and electron microscopy techniques. Monocrystalline (002) single-phase cubic films were obtained with Zn contents up to 10.4%, and with a low density of dislocations as a consequence of the optimized crystal growth process. Particu…
MOCVD growth of CdO very thin films: Problems and ways of solution
2016
Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…
A multilayer model for self-propagating high-temperature synthesis of inter-metallic compounds
2007
International audience; Self-propagating high-temperature synthesis of intermetallic compounds is of wide interest. We consider reactions in a binary system in which the rise and fall of the temperature during the reaction is such that one of the reacting metals melts but not the other. For such a system, using the phase diagram of the binary system, we present a general theory that describes the reaction taking place in a single solid particle of one component surrounded by the melt of the second component. The theory gives us a set of kinetic equations that describe the propagation of the phase interfaces in the solid particle and the change in composition of the melt that surrounds it. I…
Half-Heusler materials as model systems for phase-separated thermoelectrics
2015
Semiconducting half-Heusler compounds based on NiSn and CoSb have attracted attention because of their good performance as thermoelectric materials. Nanostructuring of the materials was experimentally established through phase separation in (T1−x′Tx″)T(M1−yMy′) alloys when mixing different transition metals (T, T′, T″) or main group elements (M, M′). The electric transport properties of such alloys depend not only on their micro- or nanostructure but also on the atomic-scale electronic structure. In the present work, the influence of the band structure and density of states on the electronic transport and thermoelectric properties is investigated in detail for the constituents of phase-sepa…