Search results for "Photoelectron spectroscopy"
showing 10 items of 439 documents
Growth and characterization of ZnO1−xSx highly mismatched alloys over the entire composition
2015
Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO1−xSx films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ∼ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO1−xSx alloys can be tuned from 3.7 eV to …
The role of Ga and Bi doping on the local structure of transparent zinc oxide thin films
2021
The experiment at HASYLAB/DESY was performed within the project I-20180036 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Filipe Correia is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D. Grant SFRH/BD/111720/2015. Joana Ribeiro is grateful to the Project WinPSC - POCI-01-0247-FEDER-017796, for the research grant from the Agência Nacional de Inovação, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the…
Laser irradiation of carbon–tungsten materials
2014
Carbon–tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an…
Influence of modification time and high frequency ultrasound irradiation on self-assembling of alkylphosphonic acids on stainless steel : electrochem…
2015
International audience; Self-assembly of alkylphosphonic acids on stainless steel was investigated under different conditions. Four different alkylphosphonic acids exhibiting alkyl chain of various size were synthesized and studied: butylphosphonic acid (C4P), octylphosphonic acid (C8P), decylphosphonic acid (C10P), and hexadecylphosphonic acid (C16P). Electrochemistry experiments were extensively carried out in order to determine electrochemical surface blocking of adsorbed layers in function of grafting time. In term of surface blocking, an 8h modification time was optimal for all alkylphosphonic acids. Longer immersion times lead to degradation of adsorbed layers. For the first time, gra…
Synthesis and characterization of nanometric powders of UO2+x, (Th,U)O2+x and (La,U)O2+x
2009
This paper describes a new way of preparing nanometric powders of uranium oxide, to fit the needs of studies on UO{sub 2} oxidation, through the electrochemical reduction of U(VI) into U(IV). These powders can also be doped with radionuclides if necessary. The precipitation of oxides occurs in reducing and anoxic conditions. This original method makes it possible to synthesize nanometric UO{sub 2} powders with a calibrated size, as well as the Th- and La-doped UO{sub 2} powders with a predefined composition. The powder characterization by the X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron Microscopy shows the formation of spherical crystallites of UO{sub 2+x},…
Thin film growth and band lineup of In2O3 on the layered semiconductor InSe
1999
Thin films of the transparent conducting oxide In2O3 have been prepared in ultrahigh vacuum by reactive evaporation of indium. X-ray diffraction, optical, and electrical measurements were used to characterize properties of films deposited on transparent insulating mica substrates under variation of the oxygen pressure. Photoelectron spectroscopy was used to investigate in situ the interface formation between In2O3 and the layered semiconductor InSe. For thick In2O3 films a work function of φ = 4.3 eV and a surface Fermi level position of EF−EV = 3.0 eV is determined, giving an ionization potential IP = 7.3 eV and an electron affinity χ = 3.7 eV. The interface exhibits a type I band alignmen…
XPS analysis of sol-gel-generated mixed-oxide layers for biomedical application
2002
The excellent biocompatibility of titanium and its alloys is associated with the properties of their dense TiO2 layer on the surface. The adsorption of proteins of the body fluid to implant surfaces depends on the properties of the surface oxide layer, especially the electronic structure. Therefore, tailoring of the oxide layer is a method for influencing protein adsorption. In this study, titanium platelets are coated by the sol–gel process with mixed oxides containing the biocompatible elements Ti, Nb, Zr and Ta. In order to verify the composition of the produced oxide layer, which can differ from the adjusted precursor composition in the sol because of different reactivities of the precu…
Investigations of the corrosion protection of ultrathin a-C and a-C:N overcoats for magnetic storage devices
2004
Abstract The thickness-dependent corrosion protection of carbon overcoats for magnetic hard disks can be analyzed by collecting X-ray absorption near edge structure (XANES) spectra at the Co L3-edge. Co is the main constituent of the protected magnetic media underneath. The spectra of the Co absorption edge display a strong peak for pure metallic, non-oxidized Co. This peak splits up into several sub-structures for oxidized Co. Therefore, XANES spectra provide a straightforward method to determine the overcoat thickness, leading to closed coverage and corrosion protection of the underlying material. A similar approach was carried out by X-ray photoelectron spectroscopy (XPS). Standard a-C:N…
Structural and electrical properties of cerium tungstate: Application to methane conversion
2020
International audience; The catalytic efficiency as well as the electrical conduction mechanism of Ce2(WO4)3 powders synthetized for the oxidation of methane were investigated. Total and partial oxidation reactions were observed in the temperature range between 600 and 750 °C under CH4/dry air flux, for low CH4 concentrations. The electrical conduction mechanism is based on electron tunneling at low temperature (< 650 °C) and hopping over an ion barrier at high temperature, which favors the catalytic oxidation of CH4 in air; these mechanisms occur during the partial and total oxidation under weak gas flow. The occurrence of these types of conduction mechanism was related both to the distort…
Temperature and substrate influence on the structure of TiN O thin films grown by low pressure metal organic chemical vapour deposition
2000
Abstract This paper presents the growth and characterization of titanium oxinitride (TiN x O y ) films grown by low pressure metal organic chemical vapour deposition (LP-MOCVD). The film nitrogen content, obtained by Rutherford backscattering spectroscopy (RBS), increases as the growth temperature increases (from 23 at.% at 450°C to 46 at.% at 750°C). Below 550°C, the films do not show any X-ray diffraction pattern. Above 550°C, the deposited films present the (111) and (200) TiN textures. Films deposited on (100) Si exhibit a 2 θ shift to higher Bragg angles, depending on the N/O ratio. These shifts are explained by using a substitutional oxygen model. Moreover, the atomic structure of suc…