Search results for "Photomultipliers"

showing 10 items of 19 documents

SiPM based tracking for detector calibration in NEXT

2015

197 páginas. Tesis Doctoral del Departamento de Física Atómica, Molecular y Nuclear de la Universidad de Valencia y del Instituto de Física Corpuscular (IFIC).

:FÍSICA::Otras especialidades físicas [UNESCO]Xenon Gas DetectorsExperimento NEXTModelo StandardSilicon PhotoMultipliersFísica de PartículasUNESCO::FÍSICA::Otras especialidades físicasNeutrinoless Double Beta Decay
researchProduct

ECRIS plasma spectroscopy with a high resolution spectrometer

2020

Electron Cyclotron Resonance Ion Source (ECRIS) plasmas contain high-energy electrons and highly charged ions implying that only noninvasive methods such as optical emission spectroscopy are reliable in their characterization. A high-resolution spectrometer (10 pm FWHM at 632 nm) enabling the detection of weak emission lines has been developed at University of Jyväskylä, Department of Physics (JYFL) for this purpose. Diagnostics results probing the densities of ions, neutral atoms, and the temperature of the cold electron population in the JYFL 14 GHz ECRIS are described. For example, it has been observed that the cold electron temperature drops from 40 eV to 20 eV when the extraction volta…

Materials scienceIon beamspektroskopiaelectron impact ionizationphotomultipliers01 natural sciences7. Clean energyElectron cyclotron resonance010305 fluids & plasmasIonion sourcesPhysics::Plasma Physics0103 physical sciencesEmission spectrumInstrumentation010302 applied physicsplasma confinementamplitude modulationPlasmaIon sourceemission spectroscopymonochromatorsdoppler effectElectron temperatureAtomic physicsDoppler broadeningplasma spectroscopy
researchProduct

Signal to Noise Ratio of Silicon Photomultipliers measured in the Continuous Wave Regime

2014

We performed a Signal to Noise Ratio characterization, in the continuous wave regime, at different bias voltages, frequencies and temperatures, on a novel class of silicon photomultipliers fabricated in planar technology on silicon p-type substrate. Signal to Noise Ratio has been measured as the ratio of the photogenerated current, filtered and averaged by a lock-in amplifier, and the Root Mean Square deviation of the overall current flowing to the device. The measured noise takes into account the shot noise, resulting from the photocurrent and the dark current. We have also performed a comparison between our SiPMs and a photomultiplier tube in terms of Signal to Noise Ratio, as a function …

Noise temperatureMaterials sciencePhysics::Instrumentation and Detectorsbusiness.industryphotomultipliers sipm snr detector siliconNoise spectral densityElectrical engineeringShot noiseSettore ING-INF/02 - Campi ElettromagneticiNoise figureNoise (electronics)Settore ING-INF/01 - ElettronicaSignal-to-noise ratioOpticsNoise generatorFlicker noisebusiness
researchProduct

Si photomultipliers for bio-sensing applications

2016

In this paper, silicon photomultipliers (SiPM) are proposed as optical detectors for bio sensing. Optical transduction is the most used detection mechanism in many biosensor applications, such as DNA microarray and real-time polymerase chain reaction. The performances of a 25 pixels device used for both applications are studied. The results confirm that the SiPM is more sensitive than the traditionally employed detectors. In fact, it is able to experimentally detect 1 nM and 100 fM of fluorophore concentrations in dried samples and solutions, respectively. We present and discuss in details the detector configuration and its characterization as fluorescence detector for bio sensing.

Optical biosensor systemPhotomultiplierFluorophoreMaterials sciencePixel010308 nuclear & particles physics010401 analytical chemistryDetectorDNA microarrayDNA microarray Optical biosensor system RT PCR Silicon PhotomultipliersNanotechnologySilicon Photomultipliers01 natural sciencesFluorescenceSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsFluorescence spectroscopy0104 chemical scienceschemistry.chemical_compoundSilicon photomultiplierchemistry0103 physical sciencesElectrical and Electronic EngineeringBiosensorRT PCR
researchProduct

Expansion cone for the 3-inch PMTs of the KM3NeT optical modules

2013

[EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average…

Optical detector readout concepts; Instrument optimisation; Cherenkov detectorsPhotomultiplier[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Instrument optimisationCherenkov detectorPhysics::Instrumentation and Detectors01 natural scienceslarge detector systems for particle and astroparticle physics; optical detector readout concepts; cherenkov detectors; instrument optimization.Photocathodelaw.inventionTelescopeOpticslaw0103 physical sciencesOptical detector readout conceptsNEUTRINO TELESCOPE010306 general physicsInstrumentationMathematical PhysicsCherenkov radiationPhysics010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorCherenkov detectorsAstrophysics::Instrumentation and Methods for AstrophysicsInstrument optimizationINGENIERIA TELEMATICAOptical detector readout concept[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]KM3NeTLarge detector systems for particle and astroparticle physicNeutrinobusinessPROJECTCherenkov detector85.60.Ha Photomultipliers ; phototubes and photocathodes ; 42.15.Dp Wave fronts and ray tracing ; 98.80.-k Cosmology ; 95.55.Vj Neutrino muon pion and other elementary particle detectors; cosmic ray detectors ; 29.40.Ka Cherenkov detectors
researchProduct

Time calibration of the ANTARES neutrino telescope

2011

The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ~1 ns. The methods developed to attain this level of precision are described.

Optical telescopesPhysics - Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and Detectors01 natural sciencesOptimal performanceHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Calibration procedureDimensional arraysAngular resolution[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino energyNEUTRINO TELESCOPE010303 astronomy & astrophysicsPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)Deep seaNeutrino detectorRelative timeCalibrationFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsTime calibrationPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov lightAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesScattering lengthNeutrino TelescopesOptical telescopeNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Tellurium compounds0103 physical sciencesOptical systemsCalibrationAngular resolution14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORCherenkov radiationtime calibration; neutrino telescopes; antaresANTARES010308 nuclear & particles physicsNeutrino interactionsAstronomyElementary particlesAstronomy and AstrophysicsPhotomultipliersFISICA APLICADAHigh Energy Physics::ExperimentUNDERWATER DETECTORNeutrino telescopesSYSTEM
researchProduct

ANTARES: The first undersea neutrino telescope

2011

The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. © 2011 Elsevier B.V. All rights reserved.

Optical telescopesPhysics::Instrumentation and DetectorsAstronomyMarine engineeringSubmarine cablesAstrophysics01 natural scienceslaw.inventionAstroparticlelaw010303 astronomy & astrophysicsInstrumentationPhysicsDense wavelength division multiplexingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsSubmarine cableDeep seaNeutrino astronomyFísica nuclearNeutrinoMarine technologyAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Wet mateable connectorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLINEOptical telescopePhysics::GeophysicsTelescopePhotomultiplier tube0103 physical sciencesNeutrinoDWDM14. Life underwaterDeep sea detectorInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORAstroparticle physics010308 nuclear & particles physicswet mateable connector.Marine technologyAstronomyElementary particles[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]PhotomultipliersKM3NeTFISICA APLICADAEarth (planet)High Energy Physics::ExperimentNeutrino astronomyastroparticle; neutrino astronomy; marine technology; dwdm; photomultiplier tube; deep sea detector; submarine cable; wet mateable connector; neutrinoSYSTEMTelescopes
researchProduct

Charge reconstruction in large-area photomultipliers

2018

Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction …

PhotomultiplierLiquid detectorsvisible and IR photons (vacuum) (photomultipliers HPDs others)Physics - Instrumentation and Detectorsgas and liquid scintillators)Physics::Instrumentation and DetectorsPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FOS: Physical sciencesvisible and IR photons (vacuum) (photomultipliers HPDsScintillatorvisible and IR photons (vacuum) (photomultipliers01 natural sciencesParticle detectorNOsymbols.namesakeOptics0103 physical sciencesCalorimeter methods010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsPhysicsscintillation and light emission processes (solid gas and liquid scintillators)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleWiener filterDetectorReconstruction algorithmScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)Scintillatorscintillation and light emission processes (solidCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)Neutrino detectorHPDsCalorimeter methodScintillatorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)symbolsLiquid detectorCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Deconvolutionbusinessothers)scintillation and light emission processes (solid gas and liquid scintillators)
researchProduct

A laser-based system for a fast and accurate measurement of gain and linearity of photomultipliers

2018

This paper describes a method for the measurement of gain and linearity of photomultipliers (PMTs). Gain and linearity are two fundamental parameters to use properly a PMT in several physics experiments. In the developed system light is laser generated and adressed to the PMT through a set of optical fibers. The data acquisition system consists in a commercial 16 channel digitizer coupled to a custom front-end board. With the chosen digitizer the system is scalable to test up to 16 PMTs, with the aid of a light distribution system and a multi-channel version of the front-end board. Data analysis is performed by a custom acquisition software. A 1.5» Hamamatsu PMT is used to validate the syst…

PhotomultiplierOptical fiberMaterials scienceDistribution (number theory)Fiber Laservisible and IR photons (vacuum) (photomultipliers01 natural sciencesAnalogue electronic circuit030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineData acquisitionOpticslawFront-end electronics for detector readout0103 physical sciencesPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Front-end electronics for detector readout; Analogue electronic circuits; Fiber LasersPhoton detectors for UVInstrumentationMathematical PhysicsFiber LasersData processing010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleLinearityLaserPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)HPDsAnalogue electronic circuitsothers)businessJournal of Instrumentation
researchProduct

P-on-N and N-on-P silicon photomultipliers: an in-depth analysis in the continuous wave regime

2013

We report on the electrical and optical comparison, in the continuous wave regime, of two novel classes of silicon photomultipliers fabricated in planar technology on silicon P-type (N-on-P class) and N-type (P-on-N class) substrates respectively.

Photomultipliers SiPM detectors continuous waveSettore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct