Search results for "Pyrophosphatase"

showing 10 items of 16 documents

Cercospora beticola toxins. Part XVII. The role of the beticolin/Mg2+ complexes in their biological activity Study of plasma membrane H+-ATPase, vacu…

1996

Beticolin-1 and beticolin-2, yellow toxins produced by the phytopathogenic fungus Cercospora beticola, inhibit the plasma membrane H(+)-ATPase. Firstly, since beticolins are able to form complexes with Mg2+, the role of the beticolin/Mg2+ complexes in the inhibition of the plasma membrane proton pump has been investigated. Calculations indicate that beticolins could exist under several forms, in the H(+)-ATPase assay mixture, both free or complexed with Mg2+. However, the percentage inhibition of the H(+)-ATPase activity is correlated to the concentration of one single form of beticolin, the dimeric neutral complex Mg2H2B2, which appears to be the active form involved in the H(+)-ATPase inh…

Pyrophosphatase H+-StereochemistryATPaseAcid PhosphatasePhosphataseBiophysicsBiological Transport ActiveHeterocyclic Compounds 4 or More RingsZea maysBiochemistryMagnesium ion complexH+- PyrophosphataseMagnesiumEnzyme InhibitorsPyrophosphatasesInhibitionchemistry.chemical_classificationATPase H+-biologyChemistryVacuolar hCell MembraneSubstrate (chemistry)Biological activityCell BiologyMycotoxinsAlkaline PhosphataseCercospora beticolabiology.organism_classificationInorganic PyrophosphataseProton-Translocating ATPasesBeticolinMembraneEnzymeBiochemistryVacuolesbiology.proteinH+- ATPaseBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Influence of ATPase activity on PPi dependent H+-transport in tonoplast vesicles of Acer pseudoplatanus

1994

Abstract Tonoplast H + -ATPase and H + -pyrophosphatase (H + -PPase) were previously characterized in Acer pseudoplatanus cells (A. Pugin et al., Plant Sci., 73 (1991) 23–34; A. Fraichard et al., Plant Physiol. Biochem., 31 (1993) 349–359). The present study concerns the relationships between these two enzymes in vitro. ATP and PPi hydrolysis were additive and the inhibition of one did not affect the activity of the second one. ATP and PPi H + -transports were also additive. The H + -PPase inhibition did not change ATP-dependent H + -transport but H + -ATPase inhibition inhibited the PPi dependent H + -transport. Because H + -PPase was reported to transport H + and K + into the vacuole (Dav…

0106 biological sciencesTrisStereochemistryATPasePlant ScienceVacuole01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundProton transport[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsTRANSPORT D'IONSGeneticsComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesPyrophosphatasebiologyERABLE FAUX PLATANEGeneral MedicineAcer pseudoplatanusbiology.organism_classificationEnzymechemistryBiochemistrybiology.proteinPMSFAgronomy and Crop Science010606 plant biology & botany
researchProduct

Inorganic Polyphosphate in Human Osteoblast-like Cells

1998

Significant amounts of inorganic polyphosphates and of polyphosphate-degrading exopolyphosphatase activity were detected in human mandibular-derived osteoblast-like cells. The amount of both soluble and insoluble long-chain polyphosphate in unstimulated osteoblast-like cells was higher than in human gingival cells, erythrocytes, peripheral blood mononuclear cells, and human blood plasma. The cellular content of polyphosphate in osteoblast-like cells strongly decreased after a combined treatment of the cells with the stimulators of osteoblast proliferation and differentiation, dexamethasone, beta-glycerophosphate, epidermal growth factor, and ascorbic acid. The amount of soluble long-chain p…

HL60Endocrinology Diabetes and MetabolismHL-60 CellsMandibleBiologyDexamethasonechemistry.chemical_compoundCalcitriolPolyphosphatesEpidermal growth factormedicineAnimalsHumansOrthopedics and Sports MedicinePyrophosphatasesCells CulturedExopolyphosphataseOsteoblastsDiphosphonatesEpidermal Growth FactorPolyphosphateCell DifferentiationEtidronic AcidOsteoblastAlkaline PhosphataseAscorbic acidAcid Anhydride HydrolasesRatsInorganic Pyrophosphatasemedicine.anatomical_structureSolubilitychemistryBiochemistryCell cultureGlycerophosphatesAlkaline phosphataseCell DivisionJournal of Bone and Mineral Research
researchProduct

Occupational exposure to metal-rich particulate matter modifies the expression of repair genes in foundry workers

2021

Foundry workers are exposed to numerous occupational health hazards, which may result in increased risk of cancer, respiratory disease, and other diseases. Oxidative stress is known to be involved in the pathogenesis of such diseases. The present study aimed to investigate the association between multiple occupational exposures in foundry workers and expression of deoxyribonucleic acid (DNA) repair genes as a biomarker of oxidative DNA damage. The study sample comprised 17 foundry workers and 27 matched control subjects. Expression of 8-oxoguanine DNA glycosylase-1 (OGG1), inosine triphosphate pyrophosphate (ITPA), and MutT homolog 1 (MTH1) in peripheral blood was examined using the real-t…

AdultMaleDNA repairThreshold limit valueHealth Toxicology and MutagenesisIran010501 environmental sciencesToxicologymedicine.disease_cause01 natural sciencesDNA Glycosylaseslaw.invention03 medical and health sciencesElectromagnetic FieldslawMetals HeavyOccupational ExposureHumansMedicinePyrophosphatasesGenePolymerase chain reaction030304 developmental biology0105 earth and related environmental sciences0303 health sciencesbusiness.industryPublic Health Environmental and Occupational HealthMiddle AgedPhosphoric Monoester HydrolasesOxidative StressDNA Repair EnzymesCase-Control StudiesMetallurgyImmunologyToxicityBiomarker (medicine)Particulate MatterITPAbusinessBiomarkersOxidative stressDNA DamageToxicology and Industrial Health
researchProduct

Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2

2011

Maria Luisa Bondì1,*, Giovanna Montana2,*, Emanuela Fabiola Craparo3, Roberto Di Gesù3, Gaetano Giammona3, Angela Bonura2, Paolo Colombo21Istituto per lo Studio dei Materiali Nanostrutturati, 2Istituto di Biomedicina ed Immunologia Molecolare, Consiglio Nazionale delle Ricerche, 3Laboratory of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari Stembio, Università di Palermo, Palermo, Italy *These authors contributed equally to this workAbstract: Parietaria pollen is one of the major causes of allergic reaction in southern Europe, affecting about 30% of all allergic patients in this area. Specific immunotherapy is the only…

ParietariaMembrane lipidsBiophysicsPharmaceutical Sciencerecombinant allergensEnzyme-Linked Immunosorbent AssayBioengineeringmedicine.disease_causelaw.inventionBiomaterialsMembrane LipidsAllergenlawInternational Journal of NanomedicineParietaria judaica (Par j)Drug DiscoverySolid lipid nanoparticlemedicineHumansParticle SizePyrophosphatasesOriginal ResearchPlant ProteinsDrug Carriersallergic rhinitisbiologyPhosphoric Diester HydrolasesChemistryOrganic ChemistryRhinitis Allergic SeasonalGeneral MedicineAllergensbiology.organism_classificationMolecular biologyRecombinant ProteinsBasophilssolid lipid nanoparticlesBiochemistrySettore CHIM/09 - Farmaceutico Tecnologico Applicativodrug deliveryDrug deliveryParietaria judaicaRecombinant DNAsolid lipid nanoparticles Parietaria judaica (Par j) drug delivery recombinant allergens specific immunotherapy allergic rhinitis.NanoparticlesEmulsionsImmunotherapyDrug carrierspecific immunotherapyInternational Journal of Nanomedicine
researchProduct

Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons

1996

The tonoplast is usually characterized by the presence of two electrogenic proton pumps: a vacuolartype H+-ATPase and a pyrophosphatase, as well as a putative water-channel-forming protein (γ-TIP). Using a post-embedding immunogold labelling technique, we have detected the presence of these transport-protein complexes not only in the tonoplast, but also in the plasma membrane and trans Golgi elements of maturing pea (Pisum sativum L.) cotyledons. These ultrastructural observations are supported by Western blotting with highly purified plasma-membrane fractions. In contrast to the vacuolar-type H+-ATPase, whose activity was not measurable, considerable pyrophosphatase activity was detected i…

0106 biological sciences0303 health sciencesInorganic pyrophosphatasePyrophosphataseATPasefood and beveragesPlant ScienceImmunogold labellingVacuoleBiologybiology.organism_classification01 natural sciencesProton pumpPisumBlot03 medical and health scienceschemistry.chemical_compoundBiochemistrychemistryGeneticsbiology.protein030304 developmental biology010606 plant biology & botanyPlanta
researchProduct

Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.

2011

International audience; Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophospha…

0106 biological sciencesPhysiologyProtein storage vacuoleProton-pumping pyrophosphataseArabidopsisPlant ScienceVacuoleUNIQUEMESH: Protein Isoforms01 natural sciencesPYROPHOSPHATASEArabidopsisProtein IsoformsMESH: ArabidopsisH+-ATPASETONOPLAST INTRINSIC PROTEINPLANT-CELLSCation Transport ProteinsIN-VIVOPlant Proteinschemistry.chemical_classification0303 health sciencesMESH: Plant ProteinsGeneral MedicineCell biologyProtein TransportVacuolar acidificationLytic cycleSeedsPREVACUOLAR COMPARTMENTMESH: DesiccationVacuolar Proton-Translocating ATPasesMESH: Protein TransportMESH: Vacuolar Proton-Translocating ATPasesGerminationMESH: Arabidopsis ProteinsMESH: GerminationBiologyAquaporinsMESH: Vacuoles03 medical and health sciencesMESH: AquaporinsMESH: Cation Transport ProteinsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyLytic vacuoleDesiccation030304 developmental biologySeedArabidopsis ProteinsCell Biologybiology.organism_classificationTRANSPORTchemistryMESH: SeedsVacuolesVacuoleMEMBRANEMOBILIZATION010606 plant biology & botany
researchProduct

Allosteric regulation by Mg2+ of the vacuolar H(+)-PPase from Acer pseudoplatanus cells. Ca2+/Mg2+ interactions.

1996

The tonoplast H(+)-PPase was previously characterized in Acer pseudoplatanus cells (Pugin et al (1991) Plant Sci 73, 23-34; Fraichard et al (1993) Plant Physiol Biochem 31, 349-359). Tonoplast vesicles were obtained from vacuoles isolated from protoplasts of A pseudoplatanus suspension cultures and used to study kinetic effects of Mg2+ and Ca2+ on PPi hydrolysis. The concentrations of ionic species (free Mg2+, free PPi, and MgPPi complexes) were calculated with apparent dissociation constants of 55.3 microM for MgPPi and 59.6 microM for CaPPi. Our results indicated that the substrate of the tonoplast PPase was a MgPPi complex and that free Mg2+ was essential for PPi hydrolysis. With fixed f…

inorganic chemicals0106 biological sciencesTrisAllosteric regulation01 natural sciencesBiochemistryTrees03 medical and health sciencesEnzyme activatorchemistry.chemical_compoundOrganophosphorus CompoundsAllosteric Regulation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMagnesiumBinding sitePyrophosphatasesComputingMilieux_MISCELLANEOUSCells Cultured030304 developmental biologychemistry.chemical_classification0303 health sciencesInorganic pyrophosphataseERABLE FAUX PLATANEGeneral MedicineDissociation constantEnzyme ActivationInorganic PyrophosphataseKineticsEnzymechemistryBiochemistryVacuolesCalciumUncompetitive inhibitor010606 plant biology & botanyBiochimie
researchProduct

Theoretical study of phosphodiester hydrolysis in nucleotide pyrophosphatase/phosphodiesterase. Environmental effects on the reaction mechanism.

2010

We here present a theoretical study of the alkaline hydrolysis of methyl p-nitrophenyl phosphate (MpNPP(-)) in aqueous solution and in the active site of nucleotide pyrophosphatase/phosphodiesterase (NPP). The analysis of our simulations, carried out by means of hybrid quantum mechanics/molecular mechanics (QM/MM) methods, shows that the reaction takes place through different reaction mechanisms depending on the environment. Thus, while in aqueous solution the reaction occurs by means of an A(N)D(N) mechanism, the enzymatic process takes place through a D(N)A(N) mechanism. In the first case, we found associative transition-state (TS) structures, while in the enzyme TS structures have dissoc…

Reaction mechanismStereochemistrydnaNAlkaline hydrolysis (body disposal)Molecular Dynamics SimulationBiochemistryCatalysisHydrolysisColloid and Surface ChemistryCatalytic DomainPyrophosphatasesAqueous solutionbiologyChemistryNucleotidesPhosphoric Diester HydrolasesHydrolysisActive sitePhosphodiesteraseWaterGeneral ChemistryAlkaline PhosphataseSolutionsZincPhosphodiester bondbiology.proteinXanthomonas axonopodisThermodynamicsJournal of the American Chemical Society
researchProduct

Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells.

2018

Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca2+ -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4). This should contribute to the stability of suspensions of the spherical nanoparticles (radius 94 nm), but make them less biocompatible. The zeta potential decreases to near zero after exposure of the Ca-polyP-NPs to protein/peptide-containing serum or medium plus serum. Electron microscopy analysis reveals that the particles rapidly change into a coacerv…

0301 basic medicineNanoparticle02 engineering and technologyengineering.materialRegenerative Medicinelaw.inventionBiomaterials03 medical and health scienceschemistry.chemical_compoundlawPolyphosphatesotorhinolaryngologic diseasesZeta potentialAnimalsHumansGeneral Materials ScienceCoacervatePolyphosphateMesenchymal stem cellMesenchymal Stem CellsGeneral Chemistry021001 nanoscience & nanotechnologydigestive system diseases3. Good healthAmorphous solidInorganic PyrophosphataseMicroscopy Electronsurgical procedures operative030104 developmental biologychemistryengineeringBiophysicsNanoparticlesBiopolymerElectron microscope0210 nano-technologyBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct