Search results for "QUANTUM STATE"

showing 10 items of 149 documents

Design of a lambda configuration in artificial coherent nanostructures

2015

The implementation of a three-level Lambda System in artificial atoms would allow to perform advanced control tasks typical of quantum optics in the solid state realm, with photons in the $\mathrm{\mu m}$/mm range. However hardware constraints put an obstacle since protection from decoherence is often conflicting with efficient coupling to external fields. We address the problem of performing conventional STImulated Raman Adiabatic Passage (STIRAP) in the presence of low-frequency noise. We propose two strategies to defeat decoherence, based on "optimal symmetry breaking" and dynamical decoupling. We suggest how to apply to the different implementations of superconducting artificial atoms, …

Quantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCondensed Matter - SuperconductivityPOPULATION TRANSFER; ADIABATIC PASSAGE; QUANTUM STATES; QUBIT; MOLECULES; CIRCUIT; ATOMSCIRCUITFOS: Physical sciencesQUBITADIABATIC PASSAGEQUANTUM STATESATOMSSuperconductivity (cond-mat.supr-con)MOLECULESPOPULATION TRANSFERQuantum Physics (quant-ph)
researchProduct

Design of a Lambda system for population transfer in superconducting nanocircuits

2013

The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only i…

Quantum decoherenceStimulated Raman adiabatic passageFOS: Physical sciencesSINGLE COOPER PAIR ADIABATIC PASSAGE QUANTUM STATES FLUX QUBIT SPECTROSCOPY MOLECULES CIRCUIT ATOMS NOISE BOX01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)Quantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsQuantumQuantum computerPhysicsCouplingQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsColors of noiseCooper pairQuantum Physics (quant-ph)
researchProduct

GHZ state generation of three Josephson qubits in the presence of bosonic baths

2013

We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.

Quantum decoherencequantum statistical methodFOS: Physical sciencesQuantum entanglement01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)quantum fluctuations quantum noise quantum jumpQuantum nonlocalityOpen quantum systemQuantum mechanics0103 physical sciencesMaster equationdecoherence010306 general physicsSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Superconductivityquantum nonlocalityQuantum PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsGreenberger–Horne–Zeilinger stateQubitopen systemQuantum Physics (quant-ph)entanglementquantum state engineering and measurementJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Quantum-state manipulation via quantum nondemolition measurements in a two-dimensional trapped ion

2001

The quantum nondemolition measurement is applied to a two-dimensional (2D) trapped-ion model in which two laser beams drive the corresponding vibrational motions and are carrier resonant with the two-level system of the ion. The information about the ionic vibrational energy can be detected by the occupation probability of the internal electronic level. The substantial difference of the 2D model from the one-dimensional one is that two orthogonal beams have a fixed phase shift instead of statistical independence. As a result, the atomic Rabi oscillation is involved in the coherent superposition of two sub-Rabi oscillations induced by the corresponding driving beams. This means that, in the …

Quantum nondemolition measurementPhysicsQuantum opticsRabi cycleQuantum stateQuantum mechanicsCavity quantum electrodynamicsCoherent statesPhysics::Atomic PhysicsAtomic and Molecular Physics and OpticsTrapped ion quantum computerRabi frequency
researchProduct

Quantum Nondemolition Measurement and Quantum State Manipulation in Two Dimensional Trapped Ion

2001

An extension of QNDmeasuremen t of the vibrational energy of the trapped ion from one dimensional case to the bidimensional one is presented. Our approach exploits the fixed phase difference existing between the two orthogonal and appropriately configured classical laser beams determining the vibronic coupling. We in fact show that this phase difference may play the role of an adjustable external parameter which allows to optimize the measurement scheme itself in terms of both precision and sensitivity. Our proposal provides a cooling method for the trapped ion from the vibrational thermal state. Due to the coherent superposition of two sub Rabi oscillations, the Rabi frequency degeneration…

Quantum nondemolition measurementPhysicsSuperposition principleRabi cycleQuantum stateQuantum mechanicsCavity quantum electrodynamicsCoherent statesTrapped ion quantum computerRabi frequency
researchProduct

Practical system for the generation of pulsed quantum frequency combs

2017

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon…

Quantum opticPhysics::Optics02 engineering and technologyPhotodetectionQuantum imagingIntegrated optics device01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpticsQuantum state0103 physical sciencesQuantum informationQCQuantum computerPhysicsQuantum opticsParametric oscillators and amplifierbusiness.industryQuantum sensorQSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQC0350Quantum technologyNonlinear optics four-wave mixingOptoelectronicsMode-locked lasers.0210 nano-technologybusiness
researchProduct

Complex quantum state generation and coherent control based on integrated frequency combs

2019

The investigation of integrated frequency comb sources characterized by equidistant spectral modes was initially driven by considerations towards classical applications, seeking a more practical and miniaturized way to generate stable broadband sources of light. Recently, in the context of scaling the complexity of optical quantum circuits, these on-chip approaches have provided a new framework to address the challenges associated with non-classical state generation and manipulation. For example, multi-photon and high-dimensional states were to date either inaccessible, lacked scalability, or were difficult to manipulate, requiring elaborate approaches. The emerging field of quantum frequen…

Quantum opticsPhotonbusiness.industryComputer sciencePhysics::OpticsNanophotonics Photonic integrated circuits Quantum entanglement Spontaneous emissionSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyQuantum entanglementSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsFrequency combQC350020210 optoelectronics & photonicsCoherent controlQuantum state0202 electrical engineering electronic engineering information engineeringElectronic engineeringCoherent statesPhotonicsbusiness
researchProduct

Generation and coherent manipulation of complex quantum states based on integrated frequency combs

2018

The investigation and use of integrated frequency comb sources (i.e. featured by equally-spaced discrete spectral modes) have recently provided a unique framework to address the challenges of generation and coherent manipulation of complex quantum states in on-chip devices. We exploit integrated frequency combs for generating entangled photon pairs, as well as multi-photon states, and high-dimensional (D-level, i.e. quDit) entangled photons. In particular, we manage to coherently manipulate such complex quantum systems by using telecommunications components (standard fiber telecom).

Quantum opticsPhysicsFrequency combPhotonPhoton entanglementbusiness.industryQuantum stateFiber (mathematics)Physics::OpticsOptoelectronicsNonlinear opticsbusinessQuantum2018 Photonics in Switching and Computing (PSC)
researchProduct

Integrated generation of complex optical quantum states and their coherent control

2018

Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced fre…

Quantum opticsPhysicsPhotonbusiness.industry01 natural sciences010309 opticsCoherent controlQuantum stateQuantum mechanicsQubit0103 physical sciencesQuantum systemPhotonics010306 general physicsQuantum information sciencebusinessNanophotonics Australasia 2017
researchProduct

Multiphoton Quantum Optics and Quantum State Engineering

2007

We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a d…

Quantum opticsPhysicsQuantum PhysicsPhotonQuantum dynamicsGeneral Physics and AstronomyFOS: Physical sciencesQuantum PhysicsMultiphoton processes; quantum states engineering; nonclassical states; quantum informationquantum informationQuantum mechanicsMultiphoton processesPhysics::Atomic and Molecular ClustersCoherent statesPhysics::Atomic PhysicsQuantum information scienceQuantum Physics (quant-ph)QuantumQuantum teleportationQuantum computerquantum states engineeringnonclassical states
researchProduct