Search results for "Quadrat"

showing 10 items of 344 documents

Quadratic rational solvable groups

2012

Abstract A finite group G is quadratic rational if all its irreducible characters are either rational or quadratic. If G is a quadratic rational solvable group, we show that the prime divisors of | G | lie in { 2 , 3 , 5 , 7 , 13 } , and no prime can be removed from this list. More generally, if G is solvable and the field Q ( χ ) generated by the values of χ over Q satisfies | Q ( χ ) : Q | ⩽ k , for all χ ∈ Irr ( G ) , then the set of prime divisors of | G | is bounded in terms of k . Also, we prove that the degree of the field generated by the values of all characters of a semi-rational solvable group (see Chillag and Dolfi, 2010 [1] ) or a quadratic rational solvable group over Q is bou…

Discrete mathematicsFinite groupAlgebra and Number TheoryField (mathematics)Isotropic quadratic formPrime (order theory)CombinatoricsQuadratic equationSolvable groupSolvable groupRational characterBounded functionQuadratic fieldQuadratic fieldMathematicsJournal of Algebra
researchProduct

Optimization procedures for the bipartite unconstrained 0-1 quadratic programming problem

2014

The bipartite unconstrained 0-1 quadratic programming problem (BQP) is a difficult combinatorial problem defined on a complete graph that consists of selecting a subgraph that maximizes the sum of the weights associated with the chosen vertices and the edges that connect them. The problem has appeared under several different names in the literature, including maximum weight induced subgraph, maximum weight biclique, matrix factorization and maximum cut on bipartite graphs. There are only two unpublished works (technical reports) where heuristic approaches are tested on BQP instances. Our goal is to combine straightforward search elements to balance diversification and intensification in bot…

Discrete mathematicsGeneral Computer ScienceIterated local searchMaximum cutInduced subgraphManagement Science and Operations ResearchComplete bipartite graphCombinatoricsBQPModeling and SimulationBipartite graphBeam searchQuadratic programmingMathematicsofComputing_DISCRETEMATHEMATICSMathematicsComputers & Operations Research
researchProduct

A General Algorithm to Calculate the Inverse Principal $p$-th Root of Symmetric Positive Definite Matrices

2019

We address the general mathematical problem of computing the inverse p-th root of a given matrix in an efficient way. A new method to construct iteration functions that allow calculating arbitrary p-th roots and their inverses of symmetric positive definite matrices is presented. We show that the order of convergence is at least quadratic and that adaptively adjusting a parameter q always leads to an even faster convergence. In this way, a better performance than with previously known iteration schemes is achieved. The efficiency of the iterative functions is demonstrated for various matrices with different densities, condition numbers and spectral radii.

Discrete mathematicsMathematical problemPhysics and Astronomy (miscellaneous)Root (chord)InversePositive-definite matrixMathematics - Rings and AlgebrasNumerical Analysis (math.NA)01 natural sciences010101 applied mathematicsMatrix (mathematics)Quadratic equationRate of convergenceRings and Algebras (math.RA)Convergence (routing)FOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsMathematics
researchProduct

Shadow trees of Mandelbrot sets

2003

Discrete mathematicsMisiurewicz pointAlgebra and Number TheoryShadowExternal rayMandelbrot setComplex quadratic polynomialMandelboxMathematicsFundamenta Mathematicae
researchProduct

Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern

1971

Abstract It is proved that totally positive quadratic forms with three or more variables and class number h = 1 exist only in a finite number of algebraic number fields. Each field allows only a finite number of such forms with bounded scale. To prove this, upper estimates for all local factors in Siegel's analytic formula are constructed by calculating explicitly numbers of solutions of quadratic congruences.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryQuadratic equationBounded functionBinary quadratic formField (mathematics)Quadratic fieldAlgebraic numberCongruence relationFinite setMathematicsJournal of Number Theory
researchProduct

Algebras with involution with linear codimension growth

2006

AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.

Discrete mathematicsPure mathematicsJordan algebraAlgebra and Number TheoryNon-associative algebraSubalgebraQuadratic algebra∗-CodimensionsSettore MAT/02 - AlgebraInterior algebra*-polynomial identity T*-ideal *-codimensions.∗-Polynomial identityT∗-idealDivision algebraAlgebra representationNest algebraMathematics
researchProduct

Finite-dimensional non-associative algebras and codimension growth

2011

AbstractLet A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded.Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One…

Discrete mathematicsPure mathematicsJordan algebraApplied MathematicsJordan algebraNon-associative algebraSubalgebraUniversal enveloping algebraPolynomial identityExponential growthCodimensionsPolynomial identityCodimensionsExponential growthJordan algebraQuadratic algebraAlgebra representationDivision algebraCellular algebraPOLINÔMIOSMathematicsAdvances in Applied Mathematics
researchProduct

Matrix algebras of polynomial codimension growth

2007

We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.

Discrete mathematicsPure mathematicsJordan algebraGeneral MathematicsNon-associative algebraSubalgebraUniversal enveloping algebraCodimensionMatrix polynomialQuadratic algebraSettore MAT/02 - AlgebraAlgebra representationpolynomial identity codimensions growthMathematics
researchProduct

Quadratic variation of martingales in Riesz spaces

2014

We derive quadratic variation inequalities for discrete-time martingales, sub- and supermartingales in the measure-free setting of Riesz spaces. Our main result is a Riesz space analogue of Austinʼs sample function theorem, on convergence of the quadratic variation processes of martingales http://www.journals.elsevier.com/journal-of-mathematical-analysis-and-applications/ http://dx.doi.org/10.1016/j.jmaa.2013.08.037 National Research Foundation of South Africa (Grant specific unique reference number (UID) 85672) and by GNAMPA of Italy (U 2012/000574 20/07/2012 and U 2012/000388 09/05/2012)

Discrete mathematicsPure mathematicsRiesz potentialRiesz representation theoremApplied MathematicsmartingaleRiesz spaceRiesz spacevector latticeQuadratic variationquadratic variationM. Riesz extension theoremSettore MAT/05 - Analisi MatematicaAustin’s theorem Martingale Measure-free stochastic processes Quadratic variation Riesz space Vector latticemeasure-free stochastic processesAustinʼs theoremMartingale (probability theory)AnalysisMathematics
researchProduct

The Action of the Symplectic Group Associated with a Quadratic Extension of Fields

1999

Abstract Given a quadratic extension L/K of fields and a regular alternating space (V, f) of finite dimension over L, we classify K-subspaces of V which do not split into the orthogonal sum of two proper K-subspaces. This allows one to determine the orbits of the group SpL(V, f) in the set of K-subspaces of V.

Discrete mathematicsPure mathematicsSymplectic groupAlgebra and Number TheoryGroup (mathematics)Symplectic representationSymplectic vector spaceQuadratic equationDimension (vector space)Metaplectic groupSettore MAT/03 - GeometriaMoment mapMathematicsGeometry of classical groups Canonical forms reduction classificationJournal of Algebra
researchProduct