Search results for "Quantum dot"

showing 10 items of 418 documents

Laser action in electrically driven quantum dot matrix

2007

A lasing system based on electrically driven quantum dot matrix is proposed, where population inversion of the dot matrix is obtained by rapid (nonadiabatic) switching on of in-plane electric field as a pumping force. Numerical analysis of electron-photon system kinetics is performed for various electric fields and temperatures. For parabolic type of confinement in QDs, a convenient amplification of contribution from several levels is indicated. The relevant analysis utilises an exact solution of Cauchy problem for an infinite chain of linear differential equations.

PhysicsCondensed matter physicsNumerical analysisSurfaces and InterfacesCondensed Matter PhysicsPopulation inversionMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMatrix (mathematics)Linear differential equationQuantum dotElectric fieldDot matrixMaterials ChemistryElectrical and Electronic EngineeringLasing thresholdphysica status solidi (a)
researchProduct

Magnetopolaron in a weakly elliptical InAs/GaAs quantum dot

2003

We study theoretically the properties of a polaron formed in a shallow, weakly elliptical, disk-shaped InAs/GaAs quantum dot in the presence of a magnetic field by using the Davydov's canonical transformation. Special attention is paid to the energy-level splitting due to the Frohlich interaction of an electron in a quantum dot with optical phonons near resonance. The polaron relaxation rates, including the anharmonicity induced channel, are analyzed for various confinement energies and magnetic field magnitudes, taking into account coherent polaronic effects.

PhysicsCondensed matter physicsPhononQuantum dotAnharmonicityRelaxation (NMR)Condensed Matter::Strongly Correlated ElectronsElectronCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPolaronQuantum computerMagnetic fieldPhysical Review B
researchProduct

Metal Clusters, Quantum Dots, and Trapped Atoms

2010

In this chapter, we discuss the electronic structure of finite quantal systems on the nanoscale. After a few general remarks on the many-particle physics of the harmonic oscillator, likely being the most studied example for the many-body systems of finite quantal systems, we turn to the electronic structure of metal clusters. We discuss Jahn–Teller deformations for the so-called “ultimate” jellium model which assumes a complete cancelation of the electronic charge with the ionic background. Within this model, we are also able to understand the stable electronic shell structure of tetrahedral (three-dimensional) or triangular (two-dimensional [2D]) cluster geometries, resembling closed shell…

PhysicsCondensed matter physicsQuantum dotJelliumPhysics::Atomic and Molecular ClustersCluster (physics)Electronic structureLandau quantizationQuantum Hall effectSpin (physics)Electron localization function
researchProduct

Electronic structure of quantum dots

2002

The properties of quasi-two-dimensional semiconductor quantum dots are reviewed. Experimental techniques for measuring the electronic shell structure and the effect of magnetic fields are briefly described. The electronic structure is analyzed in terms of simple single-particle models, density-functional theory, and "exact" diagonalization methods. The spontaneous magnetization due to Hund's rule, spin-density wave states, and electron localization are addressed. As a function of the magnetic field, the electronic structure goes through several phases with qualitatively different properties. The formation of the so-called maximum-density droplet and its edge reconstruction is discussed, and…

PhysicsCondensed matter physicsQuantum dotSimple (abstract algebra)Quantum mechanicsGeneral Physics and AstronomyMoleculeFunction (mathematics)Electronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSpontaneous magnetizationElectron localization functionMagnetic fieldReviews of Modern Physics
researchProduct

Unified model of fractal conductance fluctuations for diffusive and ballistic semiconductor devices

2006

We present an experimental comparison of magnetoconductance fluctuations measured in the ballistic, quasiballistic, and diffusive scattering regimes of semiconductor devices. In contradiction to expectations, we show that the spectral content of the magnetoconductance fluctuations exhibits an identical fractal behavior for these scattering regimes and that this behavior is remarkably insensitive to device boundary properties. We propose a unified model of fractal conductance fluctuations in the ballistic, quasiballistic, and diffusive transport regimes, in which the generic fractal behavior is generated by a subtle interplay between boundary and material-induced chaotic scattering events.

PhysicsCondensed matter physicsScatteringConductanceBoundary (topology)Semiconductor deviceUnified ModelCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic Materials[SPI]Engineering Sciences [physics]FractalQuantum dotChaotic scatteringStatistical physicsPhysical Review B
researchProduct

Observation of sequential spin flips in quantum rings

2011

We observe strong signatures of spin flips in quantum rings exposed to external magnetic fields in the Coulomb blockade regime. The signatures appear as a pattern of lines corresponding to local reduction of conductance, and they cover a large range of magnetic fields and number of electrons. The sequence of lines, as well as other features in the conductance, can be captured by many-electron calculations within density-functional theory. The calculations show that most lines in the pattern correspond to sequential spin flips between filling factors 2 and 1. We believe that the ability to probe individual spin flips provides an important step toward precise spin control in quantum ring devi…

PhysicsCondensed matter physicsta114ConductanceCoulomb blockademagnetic fieldElectronCondensed Matter PhysicsRing (chemistry)spin flipsElectronic Optical and Magnetic MaterialsMagnetic fieldQuantum dotquantum ringsddc:530Dewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikQuantumSpin-½Physical Review B
researchProduct

General Hartree–Fock method and symmetry breaking in quantum dots

2010

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we present a two-step approach in which a Hartree-Fock method, with explicit symmetry breaking, is followed by a projection technique for symmetry restoration. Three different Hartree-Fock implementations, with an increasing degree of symmetry breaking, are introduced and applied to the study of interacting planar dots with N = 3 and 6, electrons in the presence of a perpendicular magnetic field. In addition to the restricted and unrestricted techniques already employed for quantu…

PhysicsCorrelationsHartree FockQuantum dotsSpontaneous symmetry breakingHartree–Fock methodSymmetry breakingCondensed Matter PhysicsSymmetry restorationSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsSymmetry (physics)Electronic Optical and Magnetic MaterialsExplicit symmetry breakingSpinQuantum mechanicsSymmetry breakingWave functionGround stateSpin-½Physica E: Low-dimensional Systems and Nanostructures
researchProduct

Magnetic interaction between coupled quantum dots

2000

We study the magnetic coupling in artificial molecules composed of two and four laterally coupled quantum dots. The electronic ground-state configurations of such systems are determined by applying current spin density functional theory which allows to include effects of magnetic fields. While the ground-state of a two-dot molecule with strong enough inter-dot coupling tends to be antiferromagnetic with respect to the spins of the single dot components, we find that a square lattice of four dots has a ferromagnetic ground state.

PhysicsCoupling (physics)Condensed matter physicsSpinsQuantum dotAntiferromagnetismElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsGround stateInductive couplingElectronic Optical and Magnetic MaterialsMagnetic fieldThe European Physical Journal B
researchProduct

Emission properties of single InAs/GaAs quantum dot pairs and molecules grown in GaAs nanoholes

2010

Trabajo presentado a la "11th International Conference on Optics of Excitons in Confined Systems" (OECS), celebrada en en Madrid (España) del 7 al 11 de Septiembre de 2009.

PhysicsCouplingHistoryCondensed matter physicsQuantum dot moleculesCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDroplet epitaxiMolecular physicsComputer Science ApplicationsEducationQuantum dotQuantum dot laserMicrophotoluminiscenceMoleculeDiffusion (business)Quantum dot molecules
researchProduct

Photoluminescence structure of highly excited quantum dots of type II

2007

Abstract The photoluminescence (PL) due to decay of exciton-like e–e–h complex X– (expected to appear for higher levels of activation) in electrically defined quantum dots of type II is analyzed within the Hartree approach for Gaussian confining potential, where the existence of metastable (against far-infrared interband dipole transitions) states is predicted, due to interplay of bare confinement with Coulomb interaction between the carriers. As we will show, when three-particle complexes (e–e–h) are taken into account, three PL peaks can occur at zero magnetic field, which further split into four peaks when external magnetic field is applied, which stands in a good correspondence with the…

PhysicsDipoleRadiationPhotoluminescenceQuantum dotMetastabilityExcitonExcited stateAtomic physicsTrionInstrumentationMagnetic fieldRadiation Measurements
researchProduct