Search results for "Quantum physic"
showing 10 items of 1596 documents
Exact affine counter automata
2017
We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affin…
Time and space efficient quantum algorithms for detecting cycles and testing bipartiteness
2016
We study space and time efficient quantum algorithms for two graph problems -- deciding whether an $n$-vertex graph is a forest, and whether it is bipartite. Via a reduction to the s-t connectivity problem, we describe quantum algorithms for deciding both properties in $\tilde{O}(n^{3/2})$ time and using $O(\log n)$ classical and quantum bits of storage in the adjacency matrix model. We then present quantum algorithms for deciding the two properties in the adjacency array model, which run in time $\tilde{O}(n\sqrt{d_m})$ and also require $O(\log n)$ space, where $d_m$ is the maximum degree of any vertex in the input graph.
Dirac equation as a quantum walk over the honeycomb and triangular lattices
2018
A discrete-time Quantum Walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in $(2+1)$--dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice. The former is of interest in the study of graphene-like materials. The latter, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.
Laplacian versus Adjacency Matrix in Quantum Walk Search
2015
A quantum particle evolving by Schr\"odinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs, and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Lapla…
Coherent Quantum Tomography
2016
We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previous…
The spin-1/2 Kagome XXZ model in a field: competition between lattice nematic and solid orders
2016
We study numerically the spin-1/2 XXZ model in a field on an infinite Kagome lattice. We use different algorithms based on infinite Projected Entangled Pair States (iPEPS) for this, namely: (i) with simplex tensors and 9-site unit cell, and (ii) coarse-graining three spins in the Kagome lattice and mapping it to a square-lattice model with nearest-neighbor interactions, with usual PEPS tensors, 6- and 12-site unit cells. Similarly to our previous calculation at the SU(2)-symmetric point (Heisenberg Hamiltonian), for any anisotropy from the Ising limit to the XY limit, we also observe the emergence of magnetization plateaus as a function of the magnetic field, at $m_z = \frac{1}{3}$ using 6-…
Nonlinear quantum Langevin equations for bosonic modes in solid-state systems
2017
Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented by the description of the system/environment coupling in terms of coupling to two separate reservoirs, modelling the interaction with external bosonic modes and two level systems, respectively. Furthermore, we show how this model represents a specific example of a class of open quantum systems that can be described by nonlinear quantum Langevin equations. Our analysi…
Towards nonlocal density functionals by explicit modelling of the exchange-correlation hole in inhomogeneous systems
2013
We put forward new approach for the development of a non-local density functional by a direct modeling of the shape of exchange-correlation (xc) hole in inhomogeneous systems. The functional is aimed at giving an accurate xc-energy and an accurate corresponding xc-potential even in difficult near-degeneracy situations such as molecular bond breaking. In particular we demand that: (1) the xc hole properly contains -1 electron, (2) the xc-potential has the asymptotic -1/r behavior outside finite systems and (3) the xc-potential has the correct step structure related to the derivative discontinuities of the xc-energy functional. None of the currently existing functionals satisfies all these re…
Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre
2019
International audience; We report on numerical calculations of the spontaneous emission rate of a Rydberg-excited sodium atom in the vicinity of an optical nanobre. In particular, we study how this rate varies with the distance of the atom to the bre, the bre's radius, the symmetry s or p of the Rydberg state as well as its principal quantum number. We nd that a fraction of the spontaneously emitted light can be captured and guided along the bre. This suggests that such a setup could be used for networking atomic ensembles, manipulated in a collective way due to the Rydberg blockade phenomenon.
Molecular excited state calculations with adaptive wavefunctions on a quantum eigensolver emulation: reducing circuit depth and separating spin states
2021
Ab initio electronic excited state calculations are necessary for the quantitative study of photochemical reactions, but their accurate computation on classical computers is plagued by prohibitive resource scaling. The Variational Quantum Deflation (VQD) is an extension of the quantum-classical Variational Quantum Eigensolver (VQE) algorithm for calculating electronic excited state energies, and has the potential to address some of these scaling challenges using quantum computers. However, quantum computers available in the near term can only support a limited number of quantum circuit operations, so reducing the quantum computational cost in VQD methods is critical to their realisation. In…