Search results for "RB"
showing 10 items of 34251 documents
Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets
2018
This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Piezo-electrical control of gyration dynamics of magnetic vortices
2019
In this work, we first statically image the electrically controlled magnetostatic configuration of magnetic vortex states and then we dynamically image the time-resolved vortex core gyration tuned by electric fields. We demonstrate the manipulation of the vortex core gyration orbit by engineering the magnetic anisotropies. We achieve this by electric fields in a synthetic heterostructure consisting of a piezoelement coupled with magnetostrictive microstructures, where the magnetic anisotropy can be controlled by strain. We directly show the strong impact of the tailored anisotropy on the static shape of the vortex state and the dynamic vortex core orbit. The results demonstrate the possibil…
Risk Assessment of Electron Induced SEE during the JUICE Mission
2018
The SEE sensitivity of electronic devices to high energy electrons has been put in evidence experimentally. Several ground experiments have shown that electron induced SEE could occur in recent technologies. In the case of the JUICE mission, the expected electron environment is harsher than for Earth orbits. The impact of such electron fluxes on the embedded electronics was assessed in this work. The study focused on SRAM memories SEU sensitivity. Three different device references were tested under electrons, as well as under protons and heavy ions. The electron and the low energy proton direct ionization contributions to the total SEU rate have been studied in more detail.
Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect
2021
Lasing is a well-established field in optics with several applications. Yet, having lasing or huge amplification in other wave systems remains an elusive goal. Here, we utilize the concept of coherent perfect absorber-laser to realize an acoustic analog of laser with a proven amplification of more than 10 4 in terms of the scattered acoustic signal at a frequency of a few kHz. The obtained acoustic laser (or the coherent perfect absorber-laser) is shown to possess extremely high sensitivity and figure of merit with regard to ultra-small variations of the pressure (density and compressibility) and suggests its evident potential to build future acoustic pressure devices such as precise sensor…
Luminescence of polymorphous SiO2
2016
Abstract The luminescence of self-trapped exciton (STE) was found and systematically studied in tetrahedron structured silica crystals (α-quartz, coesite, cristobalite) and glass. In octahedron structured stishovite only host material defect luminescence was observed. It strongly resembles luminescence of oxygen deficient silica glass and γ or neutron irradiated α-quartz. The energetic yield of STE luminescence for α-quartz and coesite is about 20% of absorbed energy and about 5(7)% for cristobalite. Two types of STE were found in α-quartz. Two overlapping bands of STEs are located at 2.5–2.7 eV. The model of STE is proposed as Si–O bond rupture, relaxation of created non-bridging oxygen (N…
Silicon dosimeters based on Floating Gate Sensor: design, implementation and characterization
2020
A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Rad…
Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect
2017
To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI s…
Space‐vector state dynamic model of SynRM considering self‐ and cross‐saturation and related parameter identification
2020
This study proposes a state formulation of the space-vector dynamic model of the Synchronous Reluctance Motor (SynRM) considering both saturation and cross-saturation effects. The proposed model adopts the stator currents as state variables and has been theoretically developed in both the rotor and stator reference frames. The proposed magnetic model is based on a flux versus current approach and relies on the knowledge of 11 parameters. Starting from the definition of a suitable co-energy variation function, new flux versus current functions have been initially developed, based on the hyperbolic functions and, consequently, the static and dynamic inductance versus current functions have be…
Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit
2019
Recently, a method was presented for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.
Parametric Models for Predicting the Performance of Wind Turbines
2020
Abstract Performances of eight parametric power curve models for wind turbines, which can be used for the planning and management of wind energy projects, are compared in this study. Initially, the manufacturer’s power curves of four wind turbines are compared with their field performances. Then, the parametric models are developed for these turbines which are tested with their site performances. Out of the models, WERA showed the best performance in case of all the turbines. Finally, a method for using WERA in extrapolating the performance of turbines with limited test data is demonstrated with the case of a 1 kW turbine.