Search results for "REGULATION"

showing 10 items of 4463 documents

Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in gra…

2012

International audience; The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandierixV. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of my…

0106 biological sciencesNematodaPhysiology[SDV]Life Sciences [q-bio]NepovirusPlant Science01 natural sciencesXiphinema indexPlant RootsGlomeromycota03 medical and health sciencesGene Expression Regulation PlantMycorrhizaeBotanyGallAnimalsVitisMycorrhizaGlomeromycotaGlomus030304 developmental biologyPlant DiseasesPlant Proteins2. Zero hunger0303 health sciencesbiologyarbuscular mycorrhizaGrapevine fanleaf virussplit-root systembiology.organism_classificationgrapevineNematode[SDE]Environmental Sciencesbioprotectionxiphinema indexdefence gene expressionRootstock010606 plant biology & botanyResearch Paper
researchProduct

Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria

2005

International audience; Most endosymbiotic bacteria have extremely reduced genomes, accelerated evolutionary rates, and strong AT base compositional bias thought to reflect reduced efficacy of selection and increased mutational pressure. Here, we present a comparative study of evolutionary forces shaping five fully sequenced bacterial endosymbionts of insects. The results of this study were three-fold: (i) Stronger conservation of high expression genes at not just nonsynonymous, but also synonymous, sites. (ii) Variation in amino acid usage strongly correlates with GC content and expression level of genes. This pattern is largely explained by greater conservation of high expression genes, l…

0106 biological sciencesNonsynonymous substitutionInsectafood.ingredientBlochmanniaBiology010603 evolutionary biology01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesfoodBacterial ProteinsBuchneraSpecies SpecificityGeneticsAnimalsAmino AcidsCodonSymbiosisWigglesworthiaGene030304 developmental biology2. Zero hungerGeneticschemistry.chemical_classification0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsBacteriaGene Expression Regulation BacterialGeneral Medicinebiology.organism_classificationAT Rich SequenceGC Rich SequenceAmino acidINSECTEAmino Acid SubstitutionchemistryCodon usage biasMutationDatabases Nucleic AcidBuchneraGC-content
researchProduct

Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles

2019

12 pages; International audience; The prediction of pest regulation by multi-predator communities often remains challenging because of variable and opposite effects of niche complementarity and predator interference. Carabid communities are regulating weeds in arable fields and include a mix of species ranging from granivores to predators that are obligate omnivores. It is not clear from field studies whether granivore and obligate omnivore species either contribute equally or are complementary in the process of weed suppression, and little is known about the impact of potential predator interference within carabid communities on weed suppression. We compared the weed seed foraging strategy…

0106 biological sciencesObligateEcologyForagingInterspecific competition15. Life on landBiology010603 evolutionary biology01 natural sciencesIntraspecific competitionPredationWeed regulation Trophic guild Seed acceptance Latency Predation risk CompetitionOmnivore[SDE.BE]Environmental Sciences/Biodiversity and EcologyWeedEcology Evolution Behavior and SystematicsIntraguild predation[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis010606 plant biology & botanyBasic and Applied Ecology
researchProduct

Involvement of osmotic cell shrinkage on the proton extrusion rate in Saccharomyces cerevisiae

2001

Saccharomyces cerevisiae has been subjected to hyperosmotic shocks by using permeating (sorbitol, xylitol, glycerol, NaCl) and nonpermeating (PEG 600) solutes. The proton extrusion rate decreased as the osmotic pressure increased, whichever solute was used. However, the total inhibition of the cellular H+ extrusion depended on the solute used. A total inhibition was observed at about 20 MPa with glycerol, xylitol and sorbitol. With PEG 600, a total inhibition of extracellular acidification was obtained at 8.5 MPa. NaCl, with an extracellular pressure of 37.8 MPa (near saturation), did not completely inhibit the extracellular acidification. These results showed that the total inhibition of p…

0106 biological sciencesOsmotic shockPRESSION OSMOTIQUESaccharomyces cerevisiaeXylitol01 natural sciencesMicrobiologyPermeability03 medical and health scienceschemistry.chemical_compoundOsmotic Pressure010608 biotechnologyGlycerolExtracellularOsmotic pressure[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesChromatographyOsmotic concentrationCell MembraneOsmolar ConcentrationGeneral MedicineCulture Media[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryOsmoregulationSorbitolProtonsFood Science
researchProduct

NO contributes to cadmium toxicity in Arabidopsis thaliana by mediating an iron deprivation response

2009

Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of …

0106 biological sciencesPRIVATION DE FERIronOXYDE NITRIQUE (NO)Arabidopsischemistry.chemical_elementPlant ScienceOxidative phosphorylationBiologyBioinformaticsGenes PlantNitric Oxide01 natural sciencesModels BiologicalPlant RootsNitric oxide[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantArabidopsis thalianaGene030304 developmental biology0303 health sciencesCadmiumARABIDOPSIS THALIANATransporterEndogenous mediatorbiology.organism_classificationCell biologyArticle AddendumUp-RegulationPlant LeavesNG-Nitroarginine Methyl EsterchemistryIron acquisitionResearch Article010606 plant biology & botanyCadmium
researchProduct

Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: inte…

2010

Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expressio…

0106 biological sciencesPhysiologyArabidopsisPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundAmino acid homeostasisPlant Growth RegulatorsGene Expression Regulation PlantArabidopsisArabidopsis thalianaPlastidsAbscisic acidGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biologyglyceraldehyde-3-phosphate dehydrogenase0303 health sciencesbiologyArabidopsis Proteinsorganic chemicalsfungiGlyceraldehyde-3-Phosphate Dehydrogenasesfood and beveragessugar signallingglycolysisbiology.organism_classificationResearch Papers3. Good healthGAPCpchemistryBiochemistryABAABA signal transductionbiology.proteinCarbohydrate MetabolismSignal transductionSugar signal transduction010606 plant biology & botanyAbscisic AcidSignal Transduction
researchProduct

Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.

2013

Abstract: Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. X…

0106 biological sciencesPhysiologyArabidopsisPlant ScienceBiologyReal-Time Polymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health sciencesCell WallGene Expression Regulation PlantTensile StrengthArabidopsisArabidopsis thalianaXyloglucan:xyloglucosyl transferaseBiology030304 developmental biology0303 health sciencesAgriculturafungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylasebiology.organism_classificationHypocotylBiochemistryEtiolationBiophysics010606 plant biology & botany
researchProduct

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

2009

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation …

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany
researchProduct

Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response

2011

L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amoun…

0106 biological sciencesPhysiologyMutantGlutathione reductaseArabidopsisOligosaccharidesPlant Science01 natural scienceschemistry.chemical_compoundAnti-Infective AgentsGene Expression Regulation PlantCamalexinArabidopsis thaliana0303 health sciencesGlutathioneBiochemistryHost-Pathogen InteractionsDisease SusceptibilitySalicylic AcidOxidation-ReductionSignal TransductionHypersensitive responsePhytophthoradisease resistanceBiologyNitric Oxiderespiratory burst oxidase homolog d[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesStress PhysiologicalGeneticsPlants Interacting with Other Organismsglutathione reductase030304 developmental biologyPlant DiseasesArabidopsis ProteinsCell MembraneWild typeGlutathioneHydrogen Peroxidebiology.organism_classificationMolecular biologyPlant LeavesOxidative StresschemistryMutationglutathione-s-transferaseIsochorismate synthasebiology.proteinglutamate-cysteine ligaseReactive Oxygen Species010606 plant biology & botany
researchProduct

Gene regulation in parthenocarpic tomato fruit.

2009

Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlatio…

0106 biological sciencesPhysiologyParthenogenesisPlant Biologyseedless fruitPlant SciencetomatoParthenocarpy01 natural sciencesSolanum lycopersicumGene Expression Regulation PlantGene expressionArabidopsis thalianaHormone metabolismPlant Proteins2. Zero hungerchemistry.chemical_classification0303 health sciencesbiologyfood and beveragesRipeningPlantsPlants Genetically ModifiedResearch PapersBiochemistryMetabolomeBiotechnologyCrop and Pasture ProductionINOPlant Biology & Botanyfruit ripeningGenetically Modified03 medical and health sciencesparthenocarpicAuxinBotanyGeneticsGenetically modified tomatoLycopersicon esculentum030304 developmental biologyNutritionfruit quality fruit ripening INO parthenocarpic seedless fruit tomato.Arabidopsis Proteinsfungifruit qualityPlantbiology.organism_classificationSeedless fruitchemistryGene Expression RegulationFruit010606 plant biology & botanyTranscription Factors
researchProduct