Search results for "Resonance"
showing 10 items of 6625 documents
Direct P-functionalization of azobenzene by a cationic phosphidozirconocene complex.
2016
International audience; We report that the cationic phosphidozirconocene complex [(eta(5)-C5H5)(2)Zr(PCy2)][CH3B(C6F5)(3)] (II) reacts with azobenzene, resulting in the expedient formation of Zr complex (2) bound to a tridentate PNN ligand. This reaction proceeds by a mechanism of cooperative nucleophilic substitution of hydrogen. The intermediate sigma(H) adduct (1) has been characterized by NMR spectroscopy.
Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different React…
2015
Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was…
Neutron Radiography Visualization of Solid Particles in Stirring Liquid Metal
2015
Abstract This paper presents the analysis of the first dynamic neutron radiography experiment that visualized motion of solid particles in liquid metal, which was stirred by a system of four counter-rotating magnets. The paper also contains the quantitative results derived from neutron images: the distribution of particle concentration, number of admixed particles and velocities as functions of the magnet rotation speed.
Structural and electronic elucidation of a N-heterocyclic silylene vanadocene adduct
2017
The solid and solution state structure of the vanadium(II) N‐ heterocyclic silylene (NHSi) complex, [(SiIPr)V(Cp)2] (1) is reported ( SiIPr: 1,3‐bis(2,6‐diisopropylphenyl)‐1,3‐diaza‐2‐silacyclopent‐4‐ en‐2‐ylidene). The electronic structure of 1 is probed using combination of magnetic measurements, EPR spectroscopy and computational studies. The V–Si bond strength and complex forming mechanism between vanadocene and NHSi ligand is elucidated using computational methods. peerReviewed
Plasma Dynamics Characterization for Improvement of Resonantly Enhanced Harmonics Generation in Indium and Tin Laser-Produced Plasmas
2022
R.A.G. is grateful to H. Kuroda for providing the access to the laser facility. As a Center of Excellence, the Institute of Solid State Physics at the University of Latvia received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement no. 739508, project CAMART².
Quasi-periodical kinetic instabilities in minimum-B confined plasma
2022
We present the results of an experimental investigation of quasi-periodical kinetic instabilities exhibited by magnetically confined electron cyclotron resonance heated plasmas. The instabilities were detected by measuring plasma microwave emission, electron losses, and wall bremsstrahlung. The instabilities were found to be grouped into fast sequences of periodic plasma losses, separated by ∼100 µs between the bursts, followed by 1–10 ms quiescent periods before the next event. Increasing the plasma energy content by adjusting the plasma heating parameters, in particular the magnetic field strength, makes the instabilities more chaotic in the time domain. Statistical analysis reveals that …
Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma
2016
The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1–10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this artic…
Recent progress on the superconducting ion source VENUS.
2012
The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi31+, which is in the intensity range of interest for hig…
VUV emission spectroscopy combined with H- density measurements in the ion source Prometheus I
2016
“Prometheus I” is a volume H− negative ion source, driven by a network of dipolar electron cyclotron resonance (ECR; 2.45 GHz) modules. The vacuum-ultraviolet (VUV) emission spectrum of low-temperature hydrogen plasmas may be related to molecular and atomic processes involved directly or indirectly in the production of negative ions. In this work, VUV spectroscopy has been performed in the above source, Prometheus I, both in the ECR zones and the bulk (far from ECR zones and surfaces) plasma. The acquired VUV spectra are correlated with the negative ion densities, as measured by means of laser photodetachment, and the possible mechanisms of negative ion production are considered. The well-e…
High-resolution laser spectroscopy of long-lived plutonium isotopes
2017
Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionisation spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the $5f^67s^2\ ^7F_0 \rightarrow 5f^56d^27s\ (J=1)$ and $5f^67s^2\ ^7F_1 \rightarrow 5f^67s7p\ (J=2)$ atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei $^{239,241}$Pu. Collinear laser spectroscopy was performed on the $5f^67s\ ^8F_{1/2} \rightarrow J=1/2\; (27523.61\text{cm}^{-1})$ ionic transition with the hyperfine $A$ factors measured for $^{239}$Pu. Changes in mean-squared charge radii have been extracted and s…