Search results for "SILICON"
showing 10 items of 1391 documents
Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications
2020
Organ-on-chip (OOC) devices are miniaturized devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled absorption of small compounds. Here we assess the suitability of polylactic acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA substrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully cultured …
Granulocyte Colony-Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part I): Synthesis and Biodistribution Studies
2018
In the field of cancer immunotherapy, an original approach consists of using granulocyte colony-stimulating factor (G-CSF) to target and activate neutrophils, cells of the innate immune system. G-CSF is a leukocyte stimulating molecule which is commonly used in cancer patients to prevent or reduce neutropenia. We focused herein on developing a G-CSF nanocarrier which could increase the in vivo circulation time of this cytokine, keeping it active for targeting the spleen, an important reservoir of neutrophils. G-CSF-functionalized silica and gold nanoparticles were developed. Silica nanoparticles of 50 nm diameter were functionalized by a solid phase synthesis approach. The technology enable…
Encapsulation of polyprodrugs enables an efficient and controlled release of dexamethasone
2021
Water-soluble low molecular weight drugs, such as the synthetic glucocorticoid dexamethasone (DXM), can easily leak out of nanocarriers after encapsulation due to their hydrophilic nature and small size. This can lead to a reduced therapeutic efficacy and therefore to unwanted adverse effects on healthy tissue. Targeting DXM to inflammatory cells of the liver like Kupffer cells or macrophages is a promising approach to minimize typical side effects. Therefore, a controlled transport to the cells of interest and selective on-site release is crucial. Aim of this study was the development of a DXM-phosphate-based polyprodrug and the encapsulation in silica nanocontainers (SiO2 NCs) for the red…
Localized charge storage in nanocrystal memories: Feasibility of a multi-bit cell
2004
We have realized Si nanocrystal memory cells in which the Si dots have been deposited by chemical vapor deposition (CVD) on the tunnel oxide and then covered by a CVD control oxide. In this paper we report a study on the potential of this type of cells for multi-bit storage. In particular, the possibilities offered by these devices from the point of view of program/erase mechanisms, endurance, and charge retention are shown and discussed.
Modulation of platelet activation and initial cytokine release by alloplastic bone substitute materials.
2010
Objectives: Platelet-derived cytokines play a crucial role in tissue regeneration. In regenerative dental medicine, bone substitute materials (BSM) are widely used. However, initial interactions of BSM and platelets are still unknown. The aim of this study was to evaluate the potential of platelet activation and subsequent initial cytokine release by different commercial alloplastic BSM. Material and methods: Eight commercial BSM of different origins and chemical compositions (tricalcium phosphate, hydroxyapatite, bioactive glass: SiO2 and mixtures) were incubated with a platelet concentrate (platelet-rich plasma, PRP) of three healthy volunteers at room temperature for 15 min. Platelet cou…
Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology
2013
In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to …
Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [Si19P4]Cl4 and Na4[Al4Si19]
2016
The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4]Cl4 and Na4[Al4Si19], is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4]Cl4, and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19], the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4]Cl4. The difference in the relaxation times and group velocities ar…
AM1 prediction of the equilibrium geometry of Si60
1993
Abstract AM1 calculations have been carried out to determine the equilibrium geometry of Si 60 . The predicted I h geometry shows that bonds may be clearly identified as single (2.297 A) or aromatic (2.092 A). Several analogies and differences between Si 60 and C 60 are pointed out. Especially remarkable is the bigger size of the Si 60 cluster, which is predicted to have a radius 2 A larger than that of the C 60 cluster. Results are compared to other levels of theory.
A Curcumin-BODIPY Dyad and Its Silica Hybrid as NIR Bioimaging Probes
2022
In this paper we describe the synthesis of a novel bichromophoric system in which an efficient photoinduced intercomponent energy transfer process is active. The dyad consists of one subunit of curcumin and one of BODIPY and is able to emit in the far-red region, offering a large Stokes shift, capable of limiting light scattering processes for applications in microscopy. The system has been encapsulated in MCM-41 nanoparticles with dimensions between 50 and 80 nm. Both the molecular dyad and individual subunits were tested with different cell lines to study their effective applicability in bioimaging. MCM-41 nanoparticles showed no reduction in cell viability, indicating their biocompatibil…
A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials
2016
Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the mu g m(-3) range in a few seconds.