Search results for "SOIL MICROBIOLOGY"

showing 10 items of 213 documents

Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N…

2015

Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant's reaction to stressful environments, soil fertility, and a plant's relationship with other microorganisms. Such effects imply a broad reprogramming of the plant's metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth-promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth-promoting rhizobacteria (PGPR), on the metabolome and changes in metabo…

Chromatography GasNitrogenSciencemetabolic pathways; Triticum durum; field inoculation; Nitrogen metabolismPopulationmetabolic pathways Triticum durum field inoculation Nitrogen metabolismBiologyRhizobacteriaPlant RootsPhosphorus metabolismSoilMycorrhizaeSettore AGR/07 - Genetica AgrariaBotanyMetabolomeMetabolomicsNitrogen metabolismAmino AcidseducationSoil MicrobiologyTriticumeducation.field_of_studyMultidisciplinaryInoculationMediterranean RegionQfungiRfood and beveragesPhosphorusSettore AGR/02 - Agronomia E Coltivazioni ErbaceeTriticum durumMetabolic pathwaysMedicineSoil fertilitySoil microbiologyPlant nutritionResearch Article
researchProduct

Wastewaters from citrus processing industry as natural biostimulants for soil microbial community

2020

Abstract Citrus fruit processing wastewaters (CWWs), being rich in organic matter, may be a valuable resource for agricultural irrigation and, possibly, for the improvement of soil organic carbon (TOC). This issue is becoming crucial for soils of arid and semiarid environments increasingly experiencing water scarcity and continuous decline of TOC towards levels insufficient to sustain crop production. However, before using CWWs in agriculture their effects on the soil living component have to be clarified. Therefore, in this study we assessed the impact of CWWs on soil chemical and biochemical properties. Under laboratory conditions, lemon, orange and tangerine wastewaters were separately a…

CitrusEnvironmental EngineeringNitrogenMicroorganismSoil acidification0208 environmental biotechnology02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and Lawcomplex mixtures01 natural sciencesSoilSoil pHOrganic matterBiomassWaste Management and DisposalSoil Microbiology0105 earth and related environmental scienceschemistry.chemical_classificationCitrus wastewaters Soil microbial biomass and activity Phospholipid fatty acids Metabolic quotient Microbial quotientMicrobiotaAgricultureGeneral MedicineSoil carbonCarbon020801 environmental engineeringAgronomychemistryMicrobial population biologySoil waterSoil fertilitySettore AGR/16 - Microbiologia Agraria
researchProduct

Responses of microbial activity and decomposer organisms to contamination in microcosms containing coniferous forest soil.

2002

Soil respiration from microcosms contaminated with pentachlorophenol, 2-ethanolhexanoate, creosote, CuSO4, and benomyl was measured in order to evaluate usefulness of soil microcosms and microbial respiration rate monitoring as a toxicity test in soils with high organic matter content. Coniferous forest soil and its organisms were used as test objects. In addition, how a short-term low temperature period including frost affects respiration dynamics in stressed soils was studied, i.e., whether contaminants reduce resistance of the community to other (also natural) stresses. In addition, at the end of the experiment, effects of contaminants on faunal and microbial community structures were an…

Copper SulfatePentachlorophenolHealth Toxicology and MutagenesisSoil biologyAntidotes010501 environmental sciencescomplex mixtures01 natural sciencesTreesSoil respirationToxicity TestsSoil ecologyOrganic ChemicalsCreosoteSoil Microbiology0105 earth and related environmental sciencesEcologyHerbicidesSoil organic matterFatty AcidsPublic Health Environmental and Occupational HealthTemperature04 agricultural and veterinary sciencesGeneral Medicine15. Life on landPollutionSoil contamination6. Clean waterHumusOxygenTracheophytaEnvironmental chemistrySoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceMicrocosmEnvironmental MonitoringEcotoxicology and environmental safety
researchProduct

Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment.

2009

The relative importance of size and composition of microbial communities in ecosystem functioning is poorly understood. Here, we investigated how community composition and size of selected functional guilds in the nitrogen cycle correlated with agroecosystem functioning, which was defined as microbial process rates, total crop yield and nitrogen content in the crop. Soil was sampled from a 50-year fertilizer trial and the treatments comprised unfertilized bare fallow, unfertilized with crop, and plots with crop fertilized with calcium nitrate, ammonium sulfate, solid cattle manure or sewage sludge. The size of the functional guilds and the total bacterial community were greatly affected by …

Crops AgriculturalDenitrificationNitrogenColony Count Microbialengineering.materialBiologyNITRIFICATIONCOMMUNITY SIZEMicrobiologyDenitrifying bacteriaEcosystemBiomassFertilizersNitrogen cycleEcology Evolution Behavior and SystematicsEcosystemSoil MicrobiologyBacteriaCrop yieldDENITRIFICATIONManureArchaea[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyAgronomyengineeringCOMMUNTY COMPOSITIONFertilizerSoil fertilityMULTIVARIATE ANANLYSISLONG-TERM FIELD EXPERIMENTSThe ISME journal
researchProduct

Taxonomic and functional diversity of atrazine‐degrading bacterial communities enriched from agrochemical factory soil

2010

Aims: To characterize atrazine-degrading potential of bacterial communities enriched from agrochemical factory soil by analysing diversity and organization of catabolic genes. Methods and Results: The bacterial communities enriched from three different sites of varying atrazine contamination mineralized 65–80% of 14C ring-labelled atrazine. The presence of trzN-atzBC-trzD, trzN-atzABC-trzD and trzN-atzABCDEF-trzD gene combinations was determined by PCR. In all enriched communities, trzN-atzBC genes were located on a 165-kb plasmid, while atzBC or atzC genes were located on separated plasmids. Quantitative PCR revealed that catabolic genes were present in up to 4% of the community. Restricti…

DNA BacterialATRAZINEDIVERSITYBACTERIAL COMMUNITYBIODEGRADATIONPolymerase Chain ReactionApplied Microbiology and BiotechnologyActinobacteriaMicrobiologySoil03 medical and health sciencesPlasmidATZ GENESSoil PollutantsRibosomal DNAGenePhylogenySoil MicrobiologyGene Library030304 developmental biology2. Zero hunger0303 health sciencesBacteriabiologyHerbicides030306 microbiologyBacteroidetesSequence Analysis DNAGeneral MedicineAtrazine ; Biodegradation ; Bacterial community ; Diversity ; atz genes ; trz genesTRZ GENESbiology.organism_classification16S ribosomal RNA[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyGenes Bacterial13. Climate actionProteobacteriaBacteriaPlasmidsBiotechnologyJournal of Applied Microbiology
researchProduct

Direct conjugal transfers of Ti plasmid to soil microflora

2002

The bacterial species in soil that can receive a Ti plasmid by conjugation from Agrobacterium spp. were investigated. In order to have direct access to the potential reservoir of Ti plasmid amongst soil microflora, the conjugal system consisting of a multiply auxotrophic derivative of C58 (ST-96-4) and a derivative of pTiC58Delta(acc)R (pSTiEGK) containing a triple antibiotic-resistance cassette in traM was used to transfer the Ti plasmid in a complex soil microflora used as the recipient. Numerous transconjugants were obtained by this method but none was identified as Agrobacterium. This could be explained by the low density of Agrobacterium in the tested soil. As indicated by analysis of …

DNA BacterialAgrobacteriumSequence analysisAuxotrophy[SDV]Life Sciences [q-bio]Molecular Sequence DataMicrobial Sensitivity TestsPolymerase Chain ReactionMicrobiology03 medical and health sciencesTi plasmidRNA Ribosomal 16SGenetics[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyEcology Evolution Behavior and SystematicsPhylogenySoil MicrobiologyComputingMilieux_MISCELLANEOUS030304 developmental biologyDNA Primers0303 health sciencesbiologyBase Sequence030306 microbiologyDrug Resistance MicrobialSequence Analysis DNARibosomal RNAbiology.organism_classificationSinorhizobiumConjugation GeneticMicrobial geneticsSoil microbiologyPolymorphism Restriction Fragment LengthPlasmidsRhizobium
researchProduct

Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations.

2004

Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e., wheat and maize monocultures, crop rotation, and permanent grassland. Rhizobial populations were sampled from nodules of pea- or vetch plants grown in soils collected at three geographically distant sites in France, each site comprising a plot under long-term maize monoculture. Molecular characterization of isolates was performed by PCR-restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer as a neutral marker of the genomi…

DNA BacterialBiovarPopulation Dynamicsmedicine.disease_causePoaceaeApplied Microbiology and BiotechnologyMicrobiologyPolymerase Chain ReactionZea maysRhizobium leguminosarumRhizobiaCrop03 medical and health sciencesRNA Ribosomal 16SBotanymedicinePoaceae[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyComputingMilieux_MISCELLANEOUSSoil MicrobiologyTriticum030304 developmental biology2. Zero hunger0303 health sciencesGenetic diversityRhizobium leguminosarumEcologybiologyfood and beveragesAgriculture04 agricultural and veterinary sciencesBiodiversity15. Life on landbiology.organism_classification[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyAgronomy040103 agronomy & agricultureNitrogen fixation0401 agriculture forestry and fisheriesMonocultureFEMS microbiology ecology
researchProduct

Role of plant residues in determining temporal patterns of the activity, size and structure of nitrate reducer communities in soil

2010

ABSTRACT The incorporation of plant residues into soil not only represents an opportunity to limit soil organic matter depletion resulting from cultivation but also provides a valuable source of nutrients such as nitrogen. However, the consequences of plant residue addition on soil microbial communities involved in biochemical cycles other than the carbon cycle are poorly understood. In this study, we investigated the responses of one N-cycling microbial community, the nitrate reducers, to wheat, rape, and alfalfa residues for 11 months after incorporation into soil in a field experiment. A 20- to 27-fold increase in potential nitrate reduction activity was observed for residue-amended plot…

DNA BacterialCrop residueTime FactorsBiologyNitrate reductaseApplied Microbiology and BiotechnologyNitrate ReductasePolymerase Chain Reactionchemistry.chemical_compoundSoilNutrientPlant MicrobiologyNitrateNitrogen FixationNitrogen cycleSoil Microbiology[SDV.EE]Life Sciences [q-bio]/Ecology environmentEcologySoil organic matterfood and beveragesPlantsBiotaAgronomychemistryNitrogen fixationSoil microbiologyFood ScienceBiotechnology
researchProduct

Estimation of atrazine-degrading genetic potential and activity in three French agricultural soils

2004

The impact of organic amendment (sewage sludge or waste water) used to fertilize agricultural soils was estimated on the atrazine-degrading activity, the atrazine-degrading genetic potential and the bacterial community structure of soils continuously cropped with corn. Long-term application of organic amendment did not modify atrazine-mineralizing activity, which was found to essentially depend on the soil type. It also did not modify atrazine-degrading genetic potential estimated by quantitative PCR targeting atzA, B and C genes, which was shown to depend on soil type. The structure of soil bacterial community determined by RISA fingerprinting was significantly affected by organic amendmen…

DNA BacterialEAU USEEAmendment010501 environmental sciencesBiologyPolymerase Chain ReactionZea mayscomplex mixtures01 natural sciencesApplied Microbiology and BiotechnologyMicrobiologychemistry.chemical_compoundBacterial ProteinsAtrazine[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyBiotransformationSoil MicrobiologyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences2. Zero hungerBacteriaEcologybusiness.industryCommunity structureBiodiversity04 agricultural and veterinary sciences15. Life on landSoil typeDNA FingerprintingBiotechnology[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyAgronomyMicrobial population biologyWastewaterchemistrySoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesAtrazineFrancebusinessSludge
researchProduct

Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent comm…

2007

A collection of 17 atrazine-degrading bacteria isolated from soils was studied to determine the composition of the atrazine-degrading genetic potential (i.e. trzN, trzD and atz) and the presence of IS1071. The characterization of seven new atrazine-degrading bacteria revealed for the first time the trzN-atzBC gene composition in Gram-negative bacteria such as Sinorhizobium sp. or Polaromonas sp. Three main atrazine-degrading gene combinations (i) trzN– atzBC, (ii) atzABC– trzD and (iii) atzABCDEF were observed. The atz and trz genes were often located on plasmids, suggesting that plasmid conjugation could play an important role in their dispersion. In addition, the observation of these gene…

DNA BacterialGene Transfer HorizontalATRAZINEMolecular Sequence DataBIODEGRADATIONatrazine; insertion sequences; biodegradation; atz genes; trz genesBiologyMicrobiologyMicrobiologyEvolution MolecularTransposition (music)03 medical and health scienceschemistry.chemical_compoundPlasmidGram-Negative BacteriaATZ GENESGeneticsInsertion sequenceMolecular BiologyGeneSoil MicrobiologySEQUENCE D'INSERTION030304 developmental biologyRecombination GeneticGenetics0303 health sciencesINSERTION SEQUENCES030306 microbiologyCatabolismChromosomeSequence Analysis DNATRZ GENESbiology.organism_classification[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryGenes BacterialDNA Transposable ElementsMetabolic Networks and PathwaysDNABacteriaPlasmids
researchProduct