Search results for "SPECT"
showing 10 items of 28650 documents
Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma
2015
Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.
FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings
2018
Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…
Nanoporous characterization of modified humidity-sensitive MgO-Al 2 O 3 ceramics by positron annihilation lifetime spectroscopy method
2019
The work was supported by the Ukrainian Ministry of Education and Science. H. Klym thanks Prof. O. Shpotyuk for the fruitful discussion.
Study of the P3HT/PCBM interface using photoemission yield spectroscopy
2016
Photogeneration efficiency and charge carrier extraction from active layer are the parameters that determine the efficiency of organic photovoltaics (OPVs). Devices made of organic materials often consist of thin (up to 100nm) layers. At this thickness different interface effects become more pronounced. The electron affinity and ionization energy shift can affect the charge carrier transport across metal-organic interface which can affect the performance of the entire device. In the case of multilayer OPVs, energy level compatibility at the organic-organic interface is as important. Photoemission yield spectroscopy was used for organic-organic interface study by ionization energy measuremen…
Static and dynamic structure of $ZnWO_4$ nanoparticles
2011
Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …
Comparing the luminescence processes of YVO4:Eu and core-shell YVO4@YF3 nanocrystals with bulk-YVO4:Eu
2017
Abstract Comparative analysis of bulk, non-coated and core-shelled nanocrystalline YVO4:Eu was performed by means of time-resolved luminescence and VUV excitation luminescence spectroscopy techniques. Nanocrystalline YVO4:Eu samples – both as-prepared and YF3 core-shelled – have been synthesized by means of a microwave-assisted synthesis in ionic liquids, which allows to obtain 10–12 nm nanoparticles with high crystallinity. The results show noticeable differences between bulk and nanocrystalline YVO4:Eu in photoluminescence experimental data, which explains by influence of the nanocrystal surface. A YF3 core-shell layer around YVO4:Eu nanoparticles partially recovers the intensity of the E…
Low-temperature luminescence of ScF3 single crystals under excitation by VUV synchrotron radiation
2020
The work was supported by the Latvian Science Council grant LZP-2018/2-0358. The research leading to this result has also been supported by the project CALIPSO plus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. The author is grateful to K. Chernenko (MAX IV Laboratory, Lund University) for his assistance during beamtime experiments and to A. I. Popov for the fruitful discussions. V.P. also acknowledges Valsts pētījumu programma “Augstas enerģijas fizika un paātrinātāju tehnoloģijas” (Projekta Nr. VPP-IZM-CERN-2020/1-0002). REFERENCES
X-Ray studies on optical and structural properties of ZnO nanostructured thin films
2006
Abstract X-ray absorption near-edge fine structure (XANES) studies have been carried out on nanostructured ZnO thin films prepared by atmospheric pressure chemical vapour deposition (APCVD). Films have been characterized by X-ray diffraction (XRD) and optical luminescence spectroscopy exciting with laser light (PL) or X-ray (XEOL). According to XRD measurements, all the APCVD samples reveal a highly (002) oriented crystalline structure. The samples have different thickness (less than 1 μm) and show significant shifts of the PL and XEOL bands in the visible region. Zn K-edge XANES spectra were recorded using synchrotron radiation at BM08 of ESRF (France), by detecting photoluminescence yield…
Low-temperature luminescence of CdI2 under synchrotron radiation
2020
Synchrotron radiation is applied to study visible and UV luminescence spectra and their excitation spectra of undoped as well as In and Sb doped cadmium iodide crystals at 10 K. The origin of principal luminescence bands and the role of impurities in the formation of emission centers are discussed. The luminescence properties have been explained based on the electronic structure of CdI2 crystals.
High pressure theoretical and experimental analysis of the bandgap of BaMoO4, PbMoO4, and CdMoO4
2019
We have investigated the origin of the bandgap of BaMoO4, PbMoO4, and CdMoO4 crystals on the basis of optical absorption spectroscopy experiments and ab initio electronic band structure, density of states, and electronic localization function calculations under high pressure. Our study provides an accurate determination of the bandgaps Eg and their pressure derivatives d E g / dP for BaMoO4 (4.43 eV, −4.4 meV/GPa), PbMoO4 (3.45 eV, −53.8 meV/GPa), and CdMoO4 (3.71 eV, −3.3 meV/GPa). The absorption edges were fitted with the Urbach exponential model which we demonstrate to be the most appropriate for thick crystals with direct bandgaps. So far, the narrowing of the bandgap of distinct PbMoO4…