Search results for "SUBSTANCES"
showing 10 items of 1122 documents
GSK-3? Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutra…
2021
Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3β in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3β. Transfection of MIA-PaCa-2 cells with WT-GSK-3β increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3β often increased therapeutic sensitivity. An exception was observed wi…
Zinc Binding Sites Conserved in Short Neuropeptides Containing a Diphenylalanine Motif
2019
A diphenylalanine motif in peptides plays a crucial role in supramolecular systems. The current work represents a novel strategy in which a diphenylalanine motif in the central domain of neuropeptides conserves the specific Zn2+ binding site and prevents "hopping" of the Zn2+ ion between alternative metal binding sites. Alternative metal binding sites may also include carboxylic atoms in the terminal domains of a peptide. Therefore, one needs to design a peptide in which the metal will not bind the carboxylic groups in the terminal domains. Herein, we propose that engineering and designing peptides with a diphenylalanine motif in the central domain may yield excellent metal chelators.
Nested allosteric interactions in extracellular hemoglobin of the leech Macrobdella decora
2003
Hemoglobin from the leech Macrobdella decora belongs to the class of giant extracellular hexagonal bilayer globin structures found in annelid and vestimentiferan worms. These complexes consist of 144 heme-bearing subunits, exhibit a characteristic quaternary structure (2 × (6 × (3 × 4))), and contain tetramers as basic substructures that express cooperative oxygen binding and thus provide a structural basis for a hierarchy in allosteric interactions. A thorough analysis of the isolated tetramer indicates that it functions as a trimer of cooperatively interacting subunits and a non-cooperative monomer rather than as four interacting subunits. A thermodynamic analysis of the whole molecule fa…
Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning
2009
Abstract This paper describes the formulation, morphology and biocide properties of novel antimicrobial electrospun zein based ultrathin fiber structures. From the results, it was found that the electrospun fibers of zein can turn the material into a new strong antimicrobial ultrathin-structured system due to retention of remnant amounts of trifluoroacetic acid as determined by ATR–FTIR spectroscopy. Unfortunately, this system may be considered to yield very aggressive high acidic media due to release of the strong acid, which causes the antimicrobial behavior. Nevertheless, since biocide properties are more desirable at mild acidic conditions, blending zein with the natural antimicrobial c…
Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications
2020
Organ-on-chip (OOC) devices are miniaturized devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled absorption of small compounds. Here we assess the suitability of polylactic acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA substrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully cultured …
Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process
2021
Due to their imaging and radiosensitizing properties, ultrasmall gadolinium chelate-coated gold nanoparticles (AuNP) represent a promising approach in the diagnosis and the treatment of tumors. However, their poor pharmacokinetic profile, especially their rapid renal clearance prevents from an efficient exploitation of their potential for medical applications. The present study focuses on a strategy which resides in the encapsulation of AuNP in large polymeric NP to avoid the glomerular filtration and then to prolong the vascular residence time. An original encapsulation procedure using the polyethyleneimine (PEI) was set up to electrostatically entrap AuNP in biodegradable poly(lactic-co-g…
Even free radicals should follow some rules: a guide to free radical research terminology and methodology.
2014
Free radicals and oxidants are now implicated in physiological responses and in several diseases. Given the wide range of expertise of free radical researchers, application of the greater understanding of chemistry has not been uniformly applied to biological studies. We suggest that some widely used methodologies and terminologies hamper progress and need to be addressed. We make the case for abandonment and judicious use of several methods and terms and suggest practical and viable alternatives. These changes are suggested in four areas: use of fluorescent dyes to identify and quantify reactive species, methods for measurement of lipid peroxidation in complex biological systems, claims of…
1H-NMR studies on poly(oxyethylene)-bound oligopeptides
1983
Conformational studies on poly(oxyethylene)-bound homo-, oligo-, guest-host, and sequential peptides synthesized according to the liquid-phase method were carried out by means of 1H-nmr spectroscopy. The solubilizing effect of the C-terminal polymeric support allowed a thorough investigation of the secondary structure in solution.
Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications
2019
The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °
CaCl2, Bisoxazoline, and Malonate: A Protocol for an Asymmetric Michael Reaction
2015
A mild protocol for the asymmetric Michael addition of dimethyl malonate to various α,β-unsaturated carbonyl compounds was developed. The salient feature of this methodology is that a cheap and environmentally friendly Lewis acid, CaCl2, was used as a catalyst. An aminoindanol- and pyridine-derived ligand provided in the presence of CaCl2 Michael adducts in moderate to high enantioselectivities. The scope of the reaction was demonstrated.