Search results for "SURF"
showing 10 items of 9629 documents
Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper(ii) anthracenophane
2011
Thermally reversible photomagnetic (ON/OFF) switching behavior has been observed in a dinuclear oxamatocopper(ii) anthracenophane upon UV light irradiation and heating; the two CuII ions (SCu = 1/2) that are antiferromagnetically coupled in the dicopper(ii) metallacyclic precursor (ON state) become uncoupled in the corresponding [4+4] photocycloaddition product (OFF state), as substantiated from both experimental and theoretical studies. © 2011 The Royal Society of Chemistry.
Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers
2017
Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.
Self-assembly of M4L4tetrahedral cages incorporating pendant PS and PSe functionalised ligands
2019
Herein, the synthesis of metal–organic tetrahedral cages featuring flexible thio- and selenophosphate-based ligands is described. The cages were prepared by sub-component self-assembly of AP(OC6H4NH2-4)3 (A = S, Se) or SP(SC6H4NH2-4)3, 2-pyridinecarboxaldehyde, and either Fe[BF4]2 or Co[BF4]2. Preliminary host–guest studies into the ability of the pendant PS and PSe groups to interact with suitable substrates will be discussed.
Probing the guest-binding preference of three structurally similar and conformationally adaptive macrocycles.
2019
A hybrid macrocycle was synthesized by combining the repeat units in oxatub[4]arene and zorb[4]arene, and its recognition behavior and conformational analysis were studied. Three structurally similar and conformationally adaptive macrocycles show different guest-binding selectivities and preferences even in a complex mixture containing three macrocycles and three guests.
Electron Accumulative Molecules.
2018
With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B–N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B–N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C2B9H11)(C2B9H10)-NC5H4-…
A cyanide and hydroxo-bridged nanocage: a new generation of coordination clusters.
2013
International audience; Combining serendipitously-formed hydroxo-clusters, [CoII3(OH)(piv)4(L)]+ (where L = MeCN or Hpiv), with assembling cyanide building block, [FeIII(Tp)(CN)3]−, has led to an unprecedented architecture where polymetallic cobalt clusters and blocked tris-cyanide iron complexes define the apexes of a unique magnetic cubic nanocage.
Insights into the Mechanism of Anodic N–N Bond Formation by Dehydrogenative Coupling
2017
The electrochemical synthesis of pyrazolidine-3,5-diones and benzoxazoles by N-N bond formation and C,O linkage, respectively, represents an easy access to medicinally relevant structures. Electrochemistry as a key technology ensures a safe and sustainable approach. We gained insights in the mechanism of these reactions by combining cyclovoltammetric and synthetic studies. The electron-transfer behavior of anilides and dianilides was studied and led to the following conclusion: The N-N bond formation involves a diradical as intermediate, whereas the benzoxazole formation is based on a cationic mechanism. Besides these studies, we developed a synthetic route to mixed dianilides as starting m…
Higher MLCT lifetime of carbene iron(ii) complexes by chelate ring expansion
2021
Combining strong σ-donating N-heterocyclic carbene ligands and π-accepting pyridine ligands with a high octahedricity in rigid iron(ii) complexes increases the 3MLCT lifetime from 0.15 ps in the prototypical [Fe(tpy)2]2+ complex to 9.2 ps in [Fe(dpmi)2]2+12+. The tripodal CNN ligand dpmi (di(pyridine-2-yl)(3-methylimidazol-2-yl)methane) forms six-membered chelate rings with the iron(ii) centre leading to close to 90° bite angles and enhanced iron-ligand orbital overlap.
Macrocyclic complexes based on [N⋯I⋯N]+ halogen bonds
2021
New 1–2 nm macrocyclic iodine(I) complexes prepared VIA a simple ligand exchange reaction manifest rigid 0.5–1 nm cavities that bind the hexafluorophosphate anion in the gas phase. The size of the cavities and the electrostatic interactions with the iodine(I) cations influence the anion binding properties of these macrocyclic complexes.
PdII-mediated integration of isocyanides and azide ions might proceed via formal 1,3-dipolar cycloaddition between RNC ligands and uncomplexed azide
2016
Reaction between equimolar amounts of trans-[PdCl(PPh3)2(CNR)][BF4] (R = t-Bu 1, Xyl 2) and diisopropylammonium azide 3 gives the tetrazolate trans-[PdCl(PPh3)2(N4t-Bu)] (67%, 4) or trans-[PdCl(PPh3)2(N4Xyl)] (72%, 5) complexes. 4 and 5 were characterized by elemental analyses (C, H, N), HRESI+-MS, 1H and 13C{1H} NMR spectroscopies. In addition, the structure of 4 was elucidated by a single-crystal X-ray diffraction. DFT calculations showed that the mechanism for the formal cycloaddition (CA) of N3− to trans-[PdCl(PH3)2(CNMe)]+ is stepwise. The process is both kinetically and thermodynamically favorable and occurs via the formation of an acyclic NNNCN-intermediate. The second step of the fo…