Search results for "SURF"

showing 10 items of 9629 documents

Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper(ii) anthracenophane

2011

Thermally reversible photomagnetic (ON/OFF) switching behavior has been observed in a dinuclear oxamatocopper(ii) anthracenophane upon UV light irradiation and heating; the two CuII ions (SCu = 1/2) that are antiferromagnetically coupled in the dicopper(ii) metallacyclic precursor (ON state) become uncoupled in the corresponding [4+4] photocycloaddition product (OFF state), as substantiated from both experimental and theoretical studies. © 2011 The Royal Society of Chemistry.

010405 organic chemistryChemistryMetals and AlloysLight irradiation[CHIM.MATE]Chemical Sciences/Material chemistryGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysisAntiferromagnetic coupling0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCrystallographyMaterials ChemistryCeramics and CompositesChemical Communications
researchProduct

Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers

2017

Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.

010405 organic chemistryChemistryMetals and AlloysSolid-stateNanotechnologymolekyylitGeneral Chemistryhiilensidonta010402 general chemistry01 natural sciencescarbon sequestrationCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringMaterials ChemistryCeramics and CompositesmoleculesDissolutionta116Chemical Communications
researchProduct

Self-assembly of M4L4tetrahedral cages incorporating pendant PS and PSe functionalised ligands

2019

Herein, the synthesis of metal–organic tetrahedral cages featuring flexible thio- and selenophosphate-based ligands is described. The cages were prepared by sub-component self-assembly of AP(OC6H4NH2-4)3 (A = S, Se) or SP(SC6H4NH2-4)3, 2-pyridinecarboxaldehyde, and either Fe[BF4]2 or Co[BF4]2. Preliminary host–guest studies into the ability of the pendant PS and PSe groups to interact with suitable substrates will be discussed.

010405 organic chemistryChemistryMetals and AlloysThio-General Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPolymer chemistryMaterials ChemistryCeramics and CompositesTetrahedronSelf-assemblyChemical Communications
researchProduct

Probing the guest-binding preference of three structurally similar and conformationally adaptive macrocycles.

2019

A hybrid macrocycle was synthesized by combining the repeat units in oxatub[4]arene and zorb[4]arene, and its recognition behavior and conformational analysis were studied. Three structurally similar and conformationally adaptive macrocycles show different guest-binding selectivities and preferences even in a complex mixture containing three macrocycles and three guests.

010405 organic chemistryChemistryStereochemistryMetals and AlloysGeneral Chemistry010402 general chemistry01 natural sciencesCatalysisPreference0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMaterials ChemistryCeramics and CompositesChemical communications (Cambridge, England)
researchProduct

Electron Accumulative Molecules.

2018

With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B–N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B–N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C2B9H11)(C2B9H10)-NC5H4-…

010405 organic chemistryChemistryelectronsViologenmolekyylitGeneral ChemistryElectron010402 general chemistryelektronit01 natural sciencesBiochemistryChemical synthesisCatalysis0104 chemical sciencesCrystallographySingle electronColloid and Surface ChemistryElectrophileCluster (physics)medicineMoleculemoleculesta116Chemical decompositionmedicine.drugJournal of the American Chemical Society
researchProduct

A cyanide and hydroxo-bridged nanocage: a new generation of coordination clusters.

2013

International audience; Combining serendipitously-formed hydroxo-clusters, [CoII3(OH)(piv)4(L)]+ (where L = MeCN or Hpiv), with assembling cyanide building block, [FeIII(Tp)(CN)3]−, has led to an unprecedented architecture where polymetallic cobalt clusters and blocked tris-cyanide iron complexes define the apexes of a unique magnetic cubic nanocage.

010405 organic chemistryCyanideInorganic chemistryMetals and Alloyschemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographyNanocageschemistryBlock (telecommunications)Materials ChemistryCeramics and Composites[CHIM.COOR]Chemical Sciences/Coordination chemistryCobaltChemical communications (Cambridge, England)
researchProduct

Insights into the Mechanism of Anodic N–N Bond Formation by Dehydrogenative Coupling

2017

The electrochemical synthesis of pyrazolidine-3,5-diones and benzoxazoles by N-N bond formation and C,O linkage, respectively, represents an easy access to medicinally relevant structures. Electrochemistry as a key technology ensures a safe and sustainable approach. We gained insights in the mechanism of these reactions by combining cyclovoltammetric and synthetic studies. The electron-transfer behavior of anilides and dianilides was studied and led to the following conclusion: The N-N bond formation involves a diradical as intermediate, whereas the benzoxazole formation is based on a cationic mechanism. Besides these studies, we developed a synthetic route to mixed dianilides as starting m…

010405 organic chemistryDiradicalChemistryCationic polymerizationGeneral ChemistryBond formationBenzoxazole010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCombinatorial chemistryCatalysis0104 chemical sciencesAnodechemistry.chemical_compoundColloid and Surface ChemistryOrganic chemistryJournal of the American Chemical Society
researchProduct

Higher MLCT lifetime of carbene iron(ii) complexes by chelate ring expansion

2021

Combining strong σ-donating N-heterocyclic carbene ligands and π-accepting pyridine ligands with a high octahedricity in rigid iron(ii) complexes increases the 3MLCT lifetime from 0.15 ps in the prototypical [Fe(tpy)2]2+ complex to 9.2 ps in [Fe(dpmi)2]2+12+. The tripodal CNN ligand dpmi (di(pyridine-2-yl)(3-methylimidazol-2-yl)methane) forms six-membered chelate rings with the iron(ii) centre leading to close to 90° bite angles and enhanced iron-ligand orbital overlap.

010405 organic chemistryLigandMetals and AlloysGeneral ChemistryOrbital overlap010402 general chemistryRing (chemistry)01 natural sciencesCatalysisPyridine ligand0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographychemistryMaterials ChemistryCeramics and CompositesChelationCarbeneChemical Communications
researchProduct

Macrocyclic complexes based on [N⋯I⋯N]+ halogen bonds

2021

New 1–2 nm macrocyclic iodine(I) complexes prepared VIA a simple ligand exchange reaction manifest rigid 0.5–1 nm cavities that bind the hexafluorophosphate anion in the gas phase. The size of the cavities and the electrostatic interactions with the iodine(I) cations influence the anion binding properties of these macrocyclic complexes.

010405 organic chemistryLigandMetals and Alloyschemistry.chemical_elementGeneral Chemistry010402 general chemistryElectrostaticsIodine01 natural sciencesCatalysis0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonGas phasechemistry.chemical_compoundchemistryHexafluorophosphatePolymer chemistryHalogenMaterials ChemistryCeramics and CompositesAnion bindingChemical Communications
researchProduct

PdII-mediated integration of isocyanides and azide ions might proceed via formal 1,3-dipolar cycloaddition between RNC ligands and uncomplexed azide

2016

Reaction between equimolar amounts of trans-[PdCl(PPh3)2(CNR)][BF4] (R = t-Bu 1, Xyl 2) and diisopropylammonium azide 3 gives the tetrazolate trans-[PdCl(PPh3)2(N4t-Bu)] (67%, 4) or trans-[PdCl(PPh3)2(N4Xyl)] (72%, 5) complexes. 4 and 5 were characterized by elemental analyses (C, H, N), HRESI+-MS, 1H and 13C{1H} NMR spectroscopies. In addition, the structure of 4 was elucidated by a single-crystal X-ray diffraction. DFT calculations showed that the mechanism for the formal cycloaddition (CA) of N3− to trans-[PdCl(PH3)2(CNMe)]+ is stepwise. The process is both kinetically and thermodynamically favorable and occurs via the formation of an acyclic NNNCN-intermediate. The second step of the fo…

010405 organic chemistryLigandStereochemistryIsocyanidechemistry.chemical_elementGeneral Chemistrypalladium complexes010402 general chemistry01 natural sciencesMedicinal chemistryCatalysisCycloadditionazides0104 chemical sciencesIonchemistry.chemical_compoundisocyanideschemistry13-Dipolar cycloadditionPotential energy surfaceMaterials ChemistryAzideta116PalladiumNew Journal of Chemistry
researchProduct