Search results for "Single crystal"
showing 10 items of 530 documents
Solvent induced single-crystal to single-crystal structural transformation and concomitant transmetalation in a 3D cationic Zn(II)-framework.
2015
A 3D cationic Zn(II) framework, based on Zn2(CO2)4 paddle-wheel secondary building units (SBUs) and Zn16(CO2)32 polyhedral supramolecular building blocks (SBBs), has been synthesized. At room temperature, the framework undergoes guest solvent triggered reversible structural transformation and concomitant Zn(II) to Cu(II) transmetalation in a single-crystal to single-crystal fashion.
Chelated η5-cyclopentadienyl-η-ethyl complexes of molybdenum and tungsten; molecular structure of W(η5-C5H4CH2-η-CH2)(CO)3
2000
Abstract Molybdenum and tungsten complexes M(η5-C5H4CH2-η-CH2)(CO)3 (M=Mo, W) containing the bidentate ethyl-functionalized cyclopentadienyl ligand C5H4CH2CH2 have been synthesized by the reaction of spiro[2.4]hepta-4,6-diene with M(CO)3L3 (M=Mo; L3=1,3,5-C6H3Me3; M=W; L=NCMe). Reaction of the more stable tungsten complex with C6H5ICl2 and HBF4 gave complexes of the type W(η5-C5H4CH2CH2Cl)(CO)3Cl, W(η5-C5H4CH2CH3)(CO)3Cl and W(η5-C5H4CH2CH3)(CO)3(FBF3), respectively. The crystal structure of the tungsten tricarbonyl complex W(η5-C5H4CH2-η-CH2)(CO)3 has been determined by X-ray crystal diffraction on a single crystal and shows a four-legged piano stool structure.
Formation of a novel ferromagnetic end-to-end cyanate bridged homochiral helical copper(ii) Schiff base complex via spontaneous symmetry breaking
2014
A homochiral helical coordination polymer of copper(II) has been synthesized using achiral precursors via spontaneous symmetry breaking and has been confirmed by single crystal X-ray diffraction and solid-state CD spectroscopy. The variable temperature magnetic measurements indicate the presence of weak ferromagnetic exchange interactions mediated by end-to-end cyanate bridges (J = +0.12 cm(-1)).
Blue luminescence in ZnO single crystals, nanopowders, ceramic
2007
The luminescence spectra and luminescence decay processes were studied in a ZnO single crystal, nanopowders and ceramic at liquid helium and room temperature under VUV synchrotron radiation as well as under pulsed laser excitation. The exciton-exciton and exciton-multiphonon processes were compared in different ZnO nanopowders (commercial powder, powders obtained by vaporization-condensation technique) and ceramic. The possibility of luminescence decay time modification by Al3+ doping was shown.
Study of the pyroelectricity in LiIns2 crystal
2002
Abstract Pyroelectric current measurements performed on a LiInS2 monodomain single crystal show a linear variation of the current between 120 and 260 K. Near room temperature, a space charge relaxation screens pyroelectricity. The pyroelectric coefficient follows a linear thermal dependence leading to an extrapolated value of 6×10−10 C K−1 cm−2 at 300 K. As for other oxide-type pyroelectric compounds, this value is shown to be proportional to the electro-optic coefficient r333 of LiInS2.
Single-crystal EPR spectroscopy of a Co(II) single-chain magnet
2013
Abstract An electron paramagnetic resonance (EPR) study of a single crystal of Co II -based single-chain magnets (SCM) is presented. Discrete resonant absorptions are associated to the presence of magnetic domains within the chains of finite lengths determined by a competition between intra-chain exchange interactions and thermally excited single spin fluctuations. The results are interpreted as a transition from single spin dynamics at high temperature ( T ∼20 K), associated to the Kramers doublet ground state of the individual Co II ions, to archetypical SCM dynamics at low temperatures, where intra-chain correlations form long magnetic domains, whose average length is imposed by the con…
Structure and Properties of GdAuSn and the GdAuSn/MnAuSn System
2006
The crystal structure of GdAuSn was refined by means of single crystal X-ray diffraction. Band structure calculations based on the structural data confirmed the antiferromagnetic ground state and the metallic behaviour of GdAuSn. 119mSn, 155Gd and 197Au Mossbauer spectroscopic studies were used to verify the values of the hyperfine parameters that were given by the band structure calculations. Band structure calculations of MnAuSn confirmed that this half-Heusler compound belongs to the family of half-metallic ferromagnets. Magnetic susceptibility, conductivity and Mossbauer studies were used to characterize granular material based on the half-Heusler ferromagnet MnAuSn in the antiferromagn…
Rotating magnetic fields as a means to control the hydrodynamics and heat/mass transfer in the processes of bulk single crystal growth
1999
The report discusses the possibility of using different types of rotating magnetic fields (RMF) and combinations of these to control the hydrodynamics and heat/mass transfer in the processes of bulk semiconductor single crystal growth. Some factors contributing to the efficiency of RMF influence in different technologies are analysed. Their specific practical application is illustrated by some examples.
Analysis of the dopant segregation effects at the floating zone growth of large silicon crystals
1997
Abstract A computer simulation is carried out to study the dopant concentration fields in the molten zone and in the growing crystal for the floating zone (FZ) growth of large (> 100mm) Si crystals with the needle-eye technique and with feed/crystal rotation. The mathematical model developed in the previous work is used to calculate the shape of the molten zone and the velocity field in the melt. The influence of melt convection on the dopant concentration field is considered. The significance of the rotation scheme of the feed rod and crystal on the dopant distribution is investigated. The calculated dopant concentration directly at the growth interface is used to determine the normalized …
Convective phenomena in large melts including magnetic fields
2007
The set of characteristic parameters which describe modern large industrial CZ silicon single crystal growth systems is introduced. The main melt flow driving mechanisms are considered, and the characteristic density values of various in the melt acting forces are estimated. The analysis is illustrated with examples of numerical simulation and comparisons with experiments.