Search results for "Solar cells"

showing 10 items of 178 documents

Relaxation of photogenerated carriers in P3HT:PCBM organic blends.

2009

Relaxing in the sunlight. Long time-transient decays of photogenerated carriers in P3HT:PCBM blends for organic solar cells are interpreted in terms of the relaxation of hole carriers in a broad density of states. The after-pulse time-resolved microwave conductivity (TRMC) decays observed in P3HT:PCBM blends display a dependence on time close to t−β, independent of excitation intensity, in the 10 ns–1 μs range. This is explained in terms of the relaxation of carriers in a Gaussian density of states (DOS). The model is based on a demarcation level that moves with time by thermal release and retrapping of initially trapped carriers. The model shows that when the disorder is large the after-pu…

Materials scienceTime FactorsGeneral Chemical EngineeringThiophenesMolecular physicschemistry.chemical_compoundNuclear magnetic resonanceThermalSolar EnergyEnvironmental ChemistryGeneral Materials ScienceMicrowavesRange (particle radiation)photochemistryRelaxation (NMR)General EnergychemistryChlorobenzenesolar cellstransportCharge carrierPolymer blendFullerenesDispersion (chemistry)Excitationpolymer blendscharge carriersChemSusChem
researchProduct

Improvement of DSSC performance by voltage stress application

2016

Dye-sensitized solar cells (DSSCs) are promising third generation photovoltaic devices given their potential low cost and high efficiency. Some factors still affect DSSCs performance, such structure of electrodes, electrolyte compositions, nature of the sensitizers, power conversion efficiency, long-term stability, etc. In this work we discuss the effect of electrical stresses, which allow to improve DSSC performance. We have investigated the outcomes of forward and reverse DC bias stress as a function of time, voltage, and illumination level in the DSSCs sensitized with the N719, Ruthenium complex based dye. We demonstrate that all the major solar cell parameters, i.e., open circuit voltag…

Materials scienceageing effectContext (language use)02 engineering and technology010402 general chemistryDye-sensitized solar cells01 natural sciencesageing effectslaw.inventionlawSolar cellelectric stressEquivalent series resistanceOpen-circuit voltagebusiness.industryPhotovoltaic systemEnergy conversion efficiency021001 nanoscience & nanotechnologyelectric streperformance improvement0104 chemical sciencesDye-sensitized solar cellOptoelectronics0210 nano-technologybusinessDye-sensitized solar cellShort circuit
researchProduct

Investigation of recovery mechanisms in dye sensitized solar cells

2016

Abstract We study the spontaneous recovery phenomenon displayed by solar cells sensitized with a ruthenium complex-based dye N719, which manifests with the increase over the time (from several minutes up to some days) of the short circuit current density J sc and the open circuit voltage V oc , during cell illumination. Under dark conditions the current decreases over time after the application of forward bias voltages. We investigate the effects of temperature and electrolyte composition by means of current–voltage measurements and electrochemical impedance spectroscopy, both under dark and illumination conditions. The main result is that the recovery of the performances depends on the cha…

Materials sciencechemistry.chemical_elementImpedance spectroscopy02 engineering and technologyElectrolyte010402 general chemistryPhotochemistryDye-sensitized solar cells01 natural sciencesIonchemistry.chemical_compoundCurrent–voltage transientGeneral Materials ScienceTriiodideRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageElectron lifetimesCurrent-voltage transients021001 nanoscience & nanotechnologyElectron lifetimes.0104 chemical sciencesDielectric spectroscopyRutheniumDye-sensitized solar cellchemistryOptoelectronics0210 nano-technologybusinessDye-sensitized solar cellShort circuit
researchProduct

ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics

2021

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over th…

Materials sciencechemistry.chemical_elementanti-recombination layer02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesAtomic layer depositionAntimonyPhotovoltaicsinterfacial layerGeneral Materials Sciencepassivation layerÒxidsMaterialsCèl·lules fotoelèctriquesextremely thin absorberthin film solar cellsintegumentary systemLow toxicitybusiness.industrytunnel barrierfood and beverages021001 nanoscience & nanotechnology0104 chemical sciencesTunnel barrierchemistrybiological sciencesatomic layer depositionSolar energy conversionOptoelectronicschalcogenidesThin film solar cell0210 nano-technologybusinessResearch Article
researchProduct

Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells

2020

In a short period of time, the rapid development of perovskite solar cells attracted a lot of attention in the science community with the record for power conversion efficiency being broken every year. Despite the fast progress in power conversion efficiency there are still many issues that need to be solved before starting large scale commercial applications, such as, among others, the difficult and costly synthesis and usage of toxic solvents for the deposition of hole transport materials (HTMs). We herein report new enamine-based charge transport materials obtained via a simple one step synthesis procedure, from commercially available precursors and without the use of expensive organomet…

Materials scienceenamine-based hole transporting materialsEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyperovskite solar cellsCatalysisEnaminechemistry.chemical_compoundVacuum depositionElectric fieldDeposition (phase transition)Materialsenamine-based hole transporting materials ; vacuum-deposited ; perovskite solar cellsCèl·lules fotoelèctriquesPerovskite (structure)Renewable Energy Sustainability and the Environmentbusiness.industryEnergy conversion efficiency021001 nanoscience & nanotechnology0104 chemical sciencesThermogravimetryFuel TechnologychemistryOptoelectronics0210 nano-technologybusinessvacuum-deposited
researchProduct

Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells

2018

Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, iden…

Materials sciencemetal drawingPerovskite solar cell02 engineering and technology010402 general chemistry01 natural sciencesperovskite solar cellsGeneral Materials SciencePhysical and Theoretical ChemistrySpectroscopyperovskitePerovskite (structure)PhotocurrentResistive touchscreenbusiness.industry021001 nanoscience & nanotechnologyquantum theory0104 chemical sciencesefficiencysolar cellsOptical chopperOptoelectronicsQuantum efficiency0210 nano-technologybusinessCurrent density
researchProduct

ITO top-electrodes via industrial-scale PLD for efficient buffer-layer-free semitransparent perovskite solar cells

2022

The deposition of transparent conductive oxides (TCO) usually employs harsh conditions that are frequently harmful to soft/organic underlayers. Herein, successful use of an industrial pulsed laser deposition (PLD) tool to directly deposit indium tin oxide (ITO) films on semitransparent vacuum-deposited perovskite solar cells without damage to the device stack is demonstrated. The morphological, electronic, and optical properties of the PLD deposited ITO films are optimized. A direct relation between the PLD chamber pressure and the solar cell performance is obtained. The semitransparent perovskite solar cells prepared exclusively by vacuum-assisted techniques had fill factors of 78% and exc…

Mechanics of Materialsoptoelectronic devicesGeneral Materials Scienceperovskite solar cellspulsed laser depositionMaterialsindium tin oxideIndustrial and Manufacturing EngineeringCèl·lules fotoelèctriques
researchProduct

An electrochemical route towards the fabrication of nanostructured semiconductor solar cells

2010

This work presents our preliminary results regarding an electrochemical process which allows the growth of nanostructured materials by means of nanopore templates. Also we analyze possible applications of this process to fabricate nanostructured semiconductors, such as CIGS, suitable for photovoltaic devices, and we consider the implications from the perspective of characterization techniques and device modelling when using such a technology.

NanoporeSemiconductorNanolithographyFabricationMaterials sciencebusiness.industryPhotovoltaic systemNanowireCIGS Electrochemical Deposition Nanostructured Semiconductors Solar CellsNanotechnologybusinessCopper indium gallium selenide solar cellsCharacterization (materials science)
researchProduct

Light absorption and conversion in solar cell based on Si:O alloy

2013

Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent c…

Open circuit voltageSiliconAbsorption co-efficientMaterials scienceAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyPhotovoltaic effectChemical vapor depositionSettore ING-INF/01 - Elettronicalaw.inventionPlasma enhanced chemical vapor depositionOut-diffusionPlasma-enhanced chemical vapor depositionlawSolar cellDoping (additives)Thin filmAbsorption (electromagnetic radiation)Infrared spectroscopyElectrical analysiDopantDopingP-i-n structureDevice fabricationThermal-annealingSolar cells Silicon alloysPhotovoltaicTransparent conductive oxides Cerium alloyJournal of Applied Physics
researchProduct

Electrical and photovoltaic properties of indium‐tin‐oxide/p‐InSe/Au solar cells

1987

Conditions for efficiency improvement and optimization in indium‐tin‐oxide/p‐indium‐selenide solar cells are discussed in this paper. This aim is achieved by using low‐resistivity p‐indium‐selenide and by incorporating a back‐surface‐field contact. This contact is insured by a p‐indium selenide/gold barrier whose rectifying behavior is explained through the complex impurity structure of p‐indium‐selenide. Electrical and photovoltaic properties of the cells are also reported. The efficiency parameters under AM1 simulated conditions have been improved up to 32 mA/cm2 for the short‐circuit current density, 0.58 V for the open‐circuit voltage, and 0.63 for the filling factor. As a result, solar…

OptimizationMaterials sciencePerformanceIndium OxidesGeneral Physics and Astronomychemistry.chemical_elementEfficiencyPhotovoltaic effectIndium Selenide Solar CellsPhotovoltaic Effectchemistry.chemical_compound:FÍSICA [UNESCO]Selenidebusiness.industryElectrical PropertiesOptimization ; Efficiency ; Indium Selenide Solar Cells ; Performance ; Indium Oxides ; Tin Oxides ; Photovoltaic Effect ; Electrical Properties ; Experimental DataPhotovoltaic systemEnergy conversion efficiencyUNESCO::FÍSICATin OxidesSolar energyIndium tin oxidechemistryExperimental DataOptoelectronicsbusinessCurrent densityIndiumJournal of Applied Physics
researchProduct