Search results for "Spintronics"

showing 10 items of 231 documents

Magnon detection using a ferroic collinear multilayer spin valve

2018

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the de…

Materials scienceMagnetoresistance530 PhysicsScienceSpin valveGeneral Physics and Astronomy02 engineering and technology01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyMagnetizationCondensed Matter::Materials ScienceSpin wave0103 physical sciencesddc:530010306 general physicslcsh:ScienceSpin-½MultidisciplinaryCondensed matter physicsSpintronicsCondensed Matter::OtherMagnonQGeneral Chemistry021001 nanoscience & nanotechnology530 PhysikFerromagnetismCondensed Matter::Strongly Correlated Electronslcsh:Q0210 nano-technologyNature Communications
researchProduct

Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions

2021

Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e. spin-dependent electron scattering), whereas intrinsic (i.e. scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni81Fe19 and Ni50Fe50 over the frequency range from DC to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory revea…

Materials scienceMagnetoresistanceTerahertz radiation530 PhysicsQC1-999General Physics and AstronomyFOS: Physical sciences01 natural sciences530010305 fluids & plasmasTerahertz time-domain spectroscopy0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530Thin film010306 general physicsTerahertz time-domain spectroscopySpintronicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryPhysics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikAnisotropic magnetoresistanceSpintronics530 PhysikFerromagnetismPhotonicsbusinessElectron scattering
researchProduct

Direct observation of half-metallicity in the Heusler compound $Co_{2}MnSi$

2014

Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of () % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimen…

Materials sciencePhotoemission spectroscopyGeneral Physics and Astronomy02 engineering and technologyengineering.material01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Science0103 physical sciences010306 general physicsSpectroscopyElectronic band structureSpin-½MultidisciplinaryCondensed matter physicsSpintronicsSpin polarizationFermi energyGeneral Chemistry021001 nanoscience & nanotechnologyHeusler compound3. Good healthengineeringCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technology
researchProduct

A perpendicular graphene/ferromagnet electrode for spintronics

2020

We report on the large-scale integration of graphene layers over a FePd perpendicular magnetic anisotropy (PMA) platform, targeting further downscaling of spin circuits. An L10 FePd ordered alloy showing both high magneto-crystalline anisotropy and a low magnetic damping constant, is deposited by magnetron sputtering. The graphene layer is then grown on top of it by large-scale chemical vapor deposition. A step-by-step study, including structural and magnetic analyses by x-ray diffraction and Kerr microscopy, shows that the measured FePd properties are preserved after the graphene deposition process. This scheme provides a graphene protected perpendicular spin electrode showing resistance t…

Materials sciencePhysics and Astronomy (miscellaneous)02 engineering and technologyChemical vapor deposition01 natural scienceslaw.inventionCondensed Matter::Materials Sciencelaw0103 physical sciencesPerpendicular[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]AnisotropyMaterialsComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]010302 applied physicsSpintronicsCondensed matter physicsGrapheneSputter deposition021001 nanoscience & nanotechnologyInnovacions tecnològiquesFerromagnetismMagnetic damping0210 nano-technologyApplied Physics Letters
researchProduct

Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

2018

The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (∼0.1 V), that are those at which t…

Materials sciencePhysics and Astronomy (miscellaneous)MagnetoresistanceSpintronicsCondensed matter physicsVALVESSpin valve02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpace chargePoole–Frenkel effectTRANSPORTOrganic semiconductorINTERFACESPIN INJECTIONElectrical resistance and conductanceElectrical resistivity and conductivity0103 physical sciencesMAGNETORESISTANCEHETEROJUNCTIONfilms010306 general physics0210 nano-technologyTEMPERATURE
researchProduct

Large modulation of perpendicular magnetic anisotropy in a BiFeO3/Al2O3/Pt/Co/Pt multiferroic heterostructure via spontaneous polarizations

2018

Magnetism control has a variety of applications in magnetic storage and spintronic devices. Instead of the control of direct magnetoelectric coupling via strain, voltage, and Dzyaloshinskii-Moriya interaction, the polarization-dependent coupling in multiferroic materials such as BiFeO3 is employed for the electric-field control of magnetizations in this work. A perpendicular magnetic anisotropy (PMA) has been realized in a BiFeO3/Al2O3/Pt/Co/Pt multiferroic structure at room temperature. Interestingly, a distinct change of coercivity field (∼400%) has been observed in the structure with opposite polarization directions, which can be attributed to the different oxidation degree at the Pt/Co …

Materials sciencePhysics and Astronomy (miscellaneous)SpintronicsCondensed matter physicsCondensed Matter::OtherMagnetismMagnetic storageHeterojunction02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyPolarization (waves)01 natural scienceslaw.inventionCondensed Matter::Materials SciencelawHall effect0103 physical sciencesMultiferroics010306 general physics0210 nano-technologyApplied Physics Letters
researchProduct

Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

2019

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…

Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusiness
researchProduct

Epitaxial Thin-Film vs Single Crystal Growth of 2D Hofmann-Type Iron(II) Materials: A Comparative Assessment of their Bi-Stable Spin Crossover Proper…

2020

Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase …

Materials scienceQuímica organometàl·lica010402 general chemistryEpitaxy01 natural sciencesHofmann-type clathratesspin crossoverSpin crossoverGeneral Materials ScienceHardware_ARITHMETICANDLOGICSTRUCTURESThin filmMaterialschemistry.chemical_classificationSpintronicsSingle crystal growth010405 organic chemistrybusiness.industryepitaxial growthEpitaxial thin filmPolymer0104 chemical sciencescoordination polymersBi stablesize-reduction effectchemistrythin filmsOptoelectronicsbusiness
researchProduct

Phonon-induced spin relaxation of conduction electrons in silicon crystals

2014

Experimental works managing electrical injection of spin polarization in n-type and p-type silicon have been recently carried out up to room-temperature. In spite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on phonon-induced electron spin depolarization in silicon structures, in a wide range of values of lattice temperature, doping concentration and amplitude of external fields, is still at a developing stage. In order to investigate the spin transport of conduction electrons in lightly doped n-type Si crystals, a set of semiclassical multiparticle Monte Carlo simulations has been carried out. The mean spin …

Materials scienceSiliconCondensed matter physicsSpintronicsSpin polarizationPhononMonte Carlo methodsiliconchemistry.chemical_elementElectronSettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)electron spin relaxation.chemistrySpinplasmonicsSpin (physics)Monte Carlo simulation2014 International Workshop on Computational Electronics (IWCE)
researchProduct

The Azimuthal Dependence of Exchange Bias Effect and its Analysis by Spin Glass Model in Ni0.8Fe0.2/CoxNi1−xO Bilayers

2021

Exchange bias (EB) effect has been vigorously researched for many years due to its possible applications in information storage and spintronics, especially in spin valves for magnetic recording devices. Even though many models have been expounded to this day, they do not prove convincingly the origins of EB effect. We attempt to establish the azimuthal dependence of EB effect with respect to varying the composition of the antiferromagnet CoxNi $_{\mathrm {1-x}}\text{O}$ and temperature. In this report, we deposited the bilayer thin films of Ni0.8Fe0.2/Co x Ni1− x O with $x$ varying from 0.4 to 0.8 by magnetron sputtering and studied the variation of exchange bias field and coercivity. The E…

Materials scienceSpin glassGeneral Computer ScienceCondensed matter physicsSpintronicsGeneral Engineering02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesExchange bias0103 physical sciencesAntiferromagnetismGeneral Materials ScienceThin film010306 general physics0210 nano-technologySpin-½IEEE Access
researchProduct