Search results for "Stability."

showing 10 items of 3015 documents

Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast.

2016

The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we …

0301 basic medicineRNA StabilitySaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityMutantSaccharomyces cerevisiaeBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistryMolecular Imprinting03 medical and health sciencesStructural BiologyTranscription (biology)Stress PhysiologicalGeneticsRNA MessengerImprinting (psychology)Molecular BiologyGeneGeneticsMessenger RNAbiologybiology.organism_classificationCell biology030104 developmental biologyMutationbiology.proteinRNA Polymerase IIBiochimica et biophysica acta
researchProduct

Growth rate controls mRNA turnover in steady and non-steady states.

2016

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

0301 basic medicineRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeyeastTranscriptome03 medical and health sciencesTranscription (biology)Gene Expression Regulation FungalGene expressionmRNA stabilityGrowth rateRNA MessengerMolecular BiologyGenePoint of ViewMessenger RNAbiologyRNA FungalCell Biologybiology.organism_classificationMolecular biologyYeastCell biology030104 developmental biologygrowth rateGene expressiontranscriptionRNA biology
researchProduct

The RAB GTPase RAB18 modulates macroautophagy and proteostasis

2017

Macroautophagy is a conserved degradative pathway and its deterioration is linked to disturbances in cellular proteostasis and multiple diseases. Here, we show that the RAB GTPase RAB18 modulates autophagy in primary human fibroblasts. The knockdown of RAB18 results in a decreased autophagic activity, while its overexpression enhances the degradative pathway. Importantly, this function of RAB18 is dependent on RAB3GAP1 and RAB3GAP2, which might act as RAB GEFs and stimulate the activity of the RAB GTPase. Moreover, the knockdown of RAB18 deteriorates proteostasis and results in the intracellular accumulation of ubiquitinated degradation-prone proteins. Thus, the RAB GTPase RAB18 is a positi…

0301 basic medicineRecombinant Fusion Proteinsrab3 GTP-Binding ProteinsPrimary Cell CultureBiophysicsGTPaseBiochemistry03 medical and health sciencesUbiquitinGenes ReporterAutophagyHumansRNA Small InterferingMolecular BiologyGene knockdownbiologyProtein StabilityChemistryfungiAutophagyCell BiologyFibroblastsCell biologyLuminescent Proteins030104 developmental biologyProteostasisGene Expression Regulationrab GTP-Binding ProteinsProteolysisbiology.proteinCancer researchRabSignal transductionRAB18Signal TransductionBiochemical and Biophysical Research Communications
researchProduct

Asymmetric cell division requires specific mechanisms for adjusting global transcription

2017

Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actualmRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a neverending increasing mRNA synthesis rate in sma…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticCell divisionRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeCell fate determinationBiotecnologia03 medical and health sciences0302 clinical medicineRNA Polymerase ITranscription (biology)GeneticsAsymmetric cell divisionRNA MessengerCèl·lules DivisióMolecular BiologyCell SizeMessenger RNAbiologyCell CycleRNADNA-Directed RNA Polymerasesbiology.organism_classificationYeastCell biology030104 developmental biologyCell Division030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

2015

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityPopulationRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeChromatin and EpigeneticsRegulonGenètica molecular03 medical and health sciencesTranscripció genèticaTranscription (biology)GeneticsGene RegulationRNA MessengereducationGeneRegulation of gene expressionGeneticsMessenger RNAeducation.field_of_studyOrganelle BiogenesisbiologyGene regulation Chromatin and EpigeneticsRNA-Binding ProteinsRNAGenes rRNACell biologyGenes Mitochondrial030104 developmental biologyGene Expression Regulationbiology.proteinRNARibosomes
researchProduct

Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures

2016

To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilitySaccharomyces cerevisiaeBiophysicsSaccharomyces cerevisiaeProtein degradationBiochemistryRibosomeRibostasis03 medical and health sciencesStructural BiologyGene Expression Regulation FungalGene expressionProtein stabilityGeneticsProtein biosynthesisHomeostasisRNA MessengerMolecular BiologyRegulation of gene expressionTranslation ratebiologyTemperaturebiology.organism_classificationYeastYeastCell biology030104 developmental biologyProteostasisBiochemistryProtein BiosynthesisProteostasisRibosomes
researchProduct

Oxidative stress in the oral cavity is driven by individualspecific bacterial communities

2018

The term “bacterial dysbiosis” is being used quite extensively in metagenomic studies, however, the identification of harmful bacteria often fails due to large overlap between the bacterial species found in healthy volunteers and patients. We hypothesized that the pathogenic oral bacteria are individual-specific and they correlate with oxidative stress markers in saliva which reflect the inflammatory processes in the oral cavity. Temporally direct and lagged correlations between the markers and bacterial taxa were computed individually for 26 volunteers who provided saliva samples during one month (21.2 ± 2.7 samples/volunteer, 551 samples in total). The volunteers’ microbiomes differed sig…

0301 basic medicineSalivaACID REACTING SUBSTANCES030106 microbiologyPhysiologyDiseasemedicine.disease_causeApplied Microbiology and BiotechnologyMicrobiologylcsh:Microbial ecologyArticle03 medical and health sciencesmedicineMicrobiomeGENE-EXPRESSIONTOTAL ANTIOXIDANT CAPACITYScience & TechnologyDENTAL-CARIESPLASMASTABILITYbiologybiology.organism_classificationmedicine.diseaseSALIVARY MARKERSSTREPTOCOCCUS-MUTANSStreptococcus mutansMICROBIOME030104 developmental biologyBiotechnology & Applied MicrobiologyMetagenomicslcsh:QR100-130Life Sciences & BiomedicineDysbiosisRESISTANCEBacteriaOxidative stressBiotechnology
researchProduct

Health and Disease Imprinted in the Time Variability of the Human Microbiome

2017

The human microbiota correlates closely with the health status of its host. This article analyzes the microbial composition of several subjects under different conditions over time spans that ranged from days to months. Using the Langevin equation as the basis of our mathematical framework to evaluate microbial temporal stability, we proved that stable microbiotas can be distinguished from unstable microbiotas. This initial step will help us to determine how temporal microbiota stability is related to a subject’s health status and to develop a more comprehensive framework that will provide greater insight into this complex system.

0301 basic medicineScaling lawPhysiologySystems biologyPopulationlcsh:QR1-502microbiomeDiseaseGut floraBiochemistryMicrobiologylcsh:MicrobiologyHost-Microbe Biology03 medical and health sciences0302 clinical medicineGeneticsMicrobiomeeducationMolecular BiologyEcology Evolution Behavior and Systematicseducation.field_of_studymetagenomicsbiologyHuman microbiomesystems biologystabilitybiology.organism_classificationEditor's PickQR1-502Computer Science Applications030104 developmental biologyEvolutionary biologyMetagenomicsModeling and Simulationecological modeling030217 neurology & neurosurgeryResearch ArticlemSystems
researchProduct

Increased RNA virus population diversity improves adaptability

2021

The replication machinery of most RNA viruses lacks proofreading mechanisms. As a result, RNA virus populations harbor a large amount of genetic diversity that confers them the ability to rapidly adapt to changes in their environment. In this work, we investigate whether further increasing the initial population diversity of a model RNA virus can improve adaptation to a single selection pressure, thermal inactivation. For this, we experimentally increased the diversity of coxsackievirus B3 (CVB3) populations across the capsid region. We then compared the ability of these high diversity CVB3 populations to achieve resistance to thermal inactivation relative to standard CVB3 populations in an…

0301 basic medicineSciencevirusesThermal StabilityBiologyMicrobiologíaArticleCell Line03 medical and health sciencesCapsidVirologyHumansRNA VirusesExperimental EvolutionGeneticsGenetic diversityExperimental evolutionMultidisciplinary030102 biochemistry & molecular biologyQRComputational BiologyGenetic VariationRNARNA virusBiodiversityDirected evolutionbiology.organism_classificationDeep Mutational ScanningBiological Evolution030104 developmental biologyAmino Acid SubstitutionExperimental evolutionCapsidMutationEpistasisMedicineCapsid ProteinsAdaptationhuman activities
researchProduct

Snapshots of a shrinking partner: Genome reduction inSerratia symbiotica

2016

AbstractGenome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Further…

0301 basic medicineSerratiaRNA Stability030106 microbiologyved/biology.organism_classification_rank.speciesGenomicsGenomeArticle03 medical and health sciencesRNA TransferGammaproteobacteriaCluster AnalysisAmino AcidsModel organismGene030304 developmental biologyGene RearrangementGenetics0303 health sciencesMultidisciplinarybiologyObligate030306 microbiologyved/biologyBacteriocyteGene rearrangementGene Expression Regulation Bacterialbiochemical phenomena metabolism and nutritionbiology.organism_classificationBiosynthetic PathwaysRNA Bacterial030104 developmental biologyEvolutionary biologyGenes BacterialBuchneraGenome Bacterial
researchProduct