Search results for "T method"
showing 10 items of 1254 documents
Finite-element design sensitivity analysis for non-linear potential problems
1990
Design sensitivity analysis is performed for the finite-element system arising from the discretization of non-linear potential problems using isoparametric Lagrangian elements. The calculated sensitivity formulae are given in a simple matrix form. Applications to the design of electromagnets and airfoils are given.
Explicit Kutta Condition for Unsteady Two-Dimensional High-Order Potential Boundary Element Method
1997
An explicit unsteady pressure Kutta condition is discribed that was directly and efficiently implemented in a time domain high-order potential panel method so as to ensure the pressure equality on the upper and lower surfaces at the trailing edge of the airfoil at each time step.
Post‐processing of Gauss–Seidel iterations
1999
Parallel fictitious domain method for a non‐linear elliptic neumann boundary value problem
1999
Parallelization of the algebraic fictitious domain method is considered for solving Neumann boundary value problems with variable coefficients. The resulting method is applied to the parallel solution of the subsonic full potential flow problem which is linearized by the Newton method. Good scalability of the method is demonstrated on a Cray T3E distributed memory parallel computer using MPI in communication. Copyright © 1999 John Wiley & Sons, Ltd.
Mixed Parallelism for Single Alternating Group Explicit Method
1991
The paper deals with parallel implementation policies for D.J. Evans S_AGE (Single Alternating Group Explicit) unconditionally stable methods concerning the solution of parabolic problems in two space dimensions.
Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics
2010
Processes that can be modelled with numerical calculations of acoustic pressure fields include medical and industrial ultrasound, echo sounding, and environmental noise. We present two methods for making these calculations based on Helmholtz equation. The first method is based directly on the complex-valued Helmholtz equation and an algebraic multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped Helmholtz operator as a preconditioner. The second approach returns to a transient wave equation, and finds the time-periodic solution using a controllability technique. We concentrate on acoustic problems, but our methods can be used for other types of Helmholtz pro…
An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation
2007
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower freq…
A damping preconditioner for time-harmonic wave equations in fluid and elastic material
2009
A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed
Electrochemical pH Control at Gold Nanowires
2018
In this work, interdigitated arrays of nanowire electrodes are used with one array acting as the working electrode while the other is used to generate the required protons. Finite element simulations of the pH control electrodes were performed to provide insight on the generation and subsequent diffusion of protons. This informed the inter-tine spacing of the electrodes used.. This electrochemical pH control method was then used to enable the detection of analytes of interest.
Electromagnetic Sensitivity Analysis and Shape Optimization Using Method of Moments and Automatic Differentiation
2009
Sensitivity analysis is an important part of gradient-based optimization of electromagnetic devices. We demonstrate how sensitivity analysis can be incorporated into an existing in-house method of moments solver with a relatively small amount of labor by using a technique called automatic differentiation (AD). This approach enables us to obtain (geometrical) sensitivities of the discrete solution with accuracy up to numerical precision. We compare the assembly time and memory usage of the modified and original solvers. Moreover, we optimize the shape of a dipole antenna and the dimensions of a Yagi-Uda array using the presented AD technique, traditional response level finite difference sens…