Search results for "T method"
showing 10 items of 1254 documents
Buckling and post-buckling analysis of cracked stiffened panels via an X-Ritz method
2019
Abstract A multi-domain eXtended Ritz formulation, called X-Ritz, for the analysis of buckling and post-buckling of stiffened panels with cracks is presented. The theoretical framework is based on the First-order Shear Deformation Theory and accounts for von Karman's geometric nonlinearities. The structure is modeled as assembly of plate elements. Penalty techniques are used to fulfill the continuity condition along the edges of contiguous elements and to satisfy essential boundary conditions requirements. The use of an extended set of approximating functions allows to model through-the-thickness cracks and to capture the crack opening and tip singular fields as well as the structural behav…
Design of a telescopic tower for wind energy production with reduced environmental impact
2019
A prototype of a telescopic pole for wind energy production with low environmental impact and its lifting system for a 60 to 250 kW turbine and a height of 30 m have been designed and manufactured. A telescopic tower, which is raised and lowered by automation or by remote control, allows to differentiate the presence of the generator within the landscape over time. The technology currently available for lifting and lowering wind turbines is made up of telescopic poles of heights of less than 10 meters and with tilting posts of height below 30 m. Without a state of the art to refer to, the telescopic pole and its lifting system have been designed starting from scratch and solving with innova…
Global sensitivity analysis in welding simulations -- what are the material data you really need ?
2011
In this paper, the sensitivity analysis methodology is applied to numerical welding simulation in order to rank the importance of input variables on the outputs of the code like distorsions or residual stresses. The numerical welding simulation uses the finite element method, with a thermal computation followed by a mechanical one. Classically, a local sensitivity analysis is performed, hence the validity of the results is limited to the neighbourhood of a nominal point, and cross effects cannot be detected. This study implements a global sensitivity analysis which allows to screen the whole material space of the steel family mechanical properties. A set of inputs of the mechanical model-ma…
A risk assessment proposal for underground cavities in Hard Soils-Soft Rocks
2018
Abstract Underground calcarenite quarries in Marsala (Sicily) have been involved in a number of collapses that have, seriously damaged numerous buildings. The stability conditions were therefore examined in order to assess risk conditions within the historical centre of the town and the surrounding areas, which are subject to urban expansion. Starting with an extensive collection of historical information, the research was carried out through surveys of the cavities, systematic sampling of material, petrographic analysis and geotechnical testing. The results of laboratory tests and in situ investigations provided a geotechnical characterization of both the intact material and the rock mass.…
Reference interval of monocyte distribution width (MDW) in healthy blood donors.
2020
Abstract Background The aim of the study was to accurately establish the reference interval (RI) of monocyte distribution width (MDW) in healthy blood donors by the direct method using different statistical approaches. Methods MDW was measured in 486 subjects. RI of MDW was calculated by the non-parametric method, the robust method and, the Harrell-Davis bootstrap method and using different tests to identify potential outliers (Dixon-Reed and Tukey). Results Lower and upper reference limits of the RI calculated by the non-parametric method were, 16.22 (90%CI 15.78–16.47) – 23.15 (90%CI 22.80–24.10) (without outlier removal), and 16.44 (90%CI 16.21–16.67) – 22.99 (90%CI 22.33–23.22) (after o…
Cohesive Model for the Simulation of Crack Initiation and Propagation in Mixed-Mode I/II in Composite Materials
2019
A cohesive element able to connect and simulate crack growth between independently modeled finite element subdomains with non-matching meshes is proposed and validated. The approach is based on penalty constraints and has several advantages over conventional FE techniques in disconnecting two regions of a model during crack growth. The most important is the ability to release portion of the interface that are smaller than the local finite element length. Thus, the growth of delamination is not limited to advancing by releasing nodes of the FE model, which is a limitation common to the methods found in the literature. Furthermore, it is possible to vary the penalty parameter within the cohes…
Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage
2017
8 páginas, 3 figuras, 2 tablas
Numerical Treatment of the Filament-Based Lamellipodium Model (FBLM)
2017
We describe in this work the numerical treatment of the Filament-Based Lamellipodium Model (FBLM). This model is a two-phase two-dimensional continuum model, describing the dynamics of two interacting families of locally parallel F-actin filaments. It includes, among others, the bending stiffness of the filaments, adhesion to the substrate, and the cross-links connecting the two families. The numerical method proposed is a Finite Element Method (FEM) developed specifically for the needs of this problem. It is comprised of composite Lagrange–Hermite two-dimensional elements defined over a two-dimensional space. We present some elements of the FEM and emphasize in the numerical treatment of t…
On the role of material properties in ascending thoracic aortic aneurysms
2019
One of the obstacles standing before the biomechanical analysis of an ascending thoracic aortic aneurysm (ATAA) is the difficulty in obtaining patient-specific material properties. This study aimed to evaluate differences on ATAA-related stress predictions resulting from the elastostatic analysis based on the optimization of arbitrary material properties versus the application of patient-specific material properties determined from ex-vivo biaxial testing. Specifically, the elastostatic analysis relies the on the fact that, if the aortic wall stress does not depend on material properties, the aorta has to be statistically determinate. Finite element analysis (FEA) was applied to a group of …
NESSie.jl – Efficient and intuitive finite element and boundary element methods for nonlocal protein electrostatics in the Julia language
2018
Abstract The development of scientific software can be generally characterized by an initial phase of rapid prototyping and the subsequent transition to computationally efficient production code. Unfortunately, most programming languages are not well-suited for both tasks at the same time, commonly resulting in a considerable extension of the development time. The cross-platform and open-source Julia language aims at closing the gap between prototype and production code by providing a usability comparable to Python or MATLAB alongside high-performance capabilities known from C and C++ in a single programming language. In this paper, we present efficient protein electrostatics computations a…