Search results for "TECNOLOGICO"

showing 10 items of 440 documents

Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines

2020

Background: Engineered luminescent carbon nanodots (CDs) are appealing nanomaterials for cancer image-guided photothermal therapy combining near infrared (NIR)&ndash

0301 basic medicineCancer ResearchtheranosticsNecroptosisanticancer phototherapynecroptosisSettore BIO/11 - Biologia Molecolare02 engineering and technologylcsh:RC254-282Article03 medical and health sciencesRIPK1breast cancermedicineirinotecan;carbon nanodotsirinotecanChemistrygene expression analysesCancerPhotothermal therapy021001 nanoscience & nanotechnologymedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensIrinotecan030104 developmental biologyOncologySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoApoptosisDrug deliveryCancer cellCancer research0210 nano-technologymedicine.drugCancers
researchProduct

Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases

2018

In this work, new micellar systems able to cross corneal barrier and to improve the permeation of imatinib free base were prepared and characterized. HA-EDA-C-16, HA-EDA-C-16-PEG, and HA-EDA-C-16-CRN micelles were synthesized starting from hyaluronic acid (HA), ethylenediamine (EDA), hexadecyl chains (C-16), polyethylene glycol (PEG), or L-carnitine (CRN). These nanocarriers showed optimal particle size and mucoadhesive properties. Imatinib-loaded micelles were able to interact with corneal barrier and to promote imatinib transcorneal permeation and penetration. In addition, a study was conducted to understand the in vitro imatinib inhibitory effect on a choroidal neovascularization process…

0301 basic medicineCell SurvivalDrug CompoundingPharmaceutical ScienceAdministration Ophthalmic02 engineering and technologyPolyethylene glycolMicellePermeabilityCell LinePolyethylene GlycolsCornea03 medical and health scienceschemistry.chemical_compoundocular drug delivery hyaluronic acid polymeric micelles imatinib transcorneal permeation ocular neovascular diseasesCarnitinehemic and lymphatic diseasesDrug DiscoveryHyaluronic acidPEG ratiomedicineocular drug delivery; hyaluronic acid; polymeric micelles; imatinib; transcorneal permeation; ocular neovascular diseasesAnimalsHumansHyaluronic AcidParticle SizeProtein Kinase InhibitorsneoplasmsMicellesDrug CarriersEndothelial CellsImatinibPermeation021001 nanoscience & nanotechnologyEthylenediaminesIn vitroChoroidal NeovascularizationDrug Liberation030104 developmental biologychemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiophysicsImatinib MesylateMolecular Medicinelipids (amino acids peptides and proteins)CattleNanocarriers0210 nano-technologymedicine.drug
researchProduct

Small endogenous molecules as moiety to improve targeting of CNS drugs.

2016

A major challenge in the development of novel neuro-therapeutic agents is to effectively overcome the blood-brain barrier (BBB), which acts as a 'working dynamic barrier'. The core problem in the treatment of neurodegenerative diseases is failed delivery of potential medicines due to their inadequate permeation rate. Areas covered: The present review gives a summary of endogenous moieties used in synthesizing prodrugs, derivatives and bioisosteric drugs appositely designed to structurally resemble physiological molecular entities able to be passively absorbed or carried by specific carrier proteins expressed at BBB level. In particular, this overview focuses on aminoacidic, glycosyl, purine…

0301 basic medicinePharmaceutical ScienceEndogenyComputational biologyPharmacologyBlood–brain barrierDiffusion03 medical and health sciences0302 clinical medicinemedicinesmall endogenous moleculesMoietyCNS prodrugAnimalsHumansProdrugsmultifunctional drugbiologyMembrane transport proteinChemistryCNS carrierMembrane Transport ProteinsTranslation (biology)TransporterBiological TransportProdrug030104 developmental biologymedicine.anatomical_structurebioisosteric drugCarrier proteinSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoBlood-Brain Barrierbiology.proteinCarrier ProteinsBBB030217 neurology & neurosurgeryCentral Nervous System AgentsExpert opinion on drug delivery
researchProduct

Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype, via exosomal miR-21

2016

Abstract: Tumor derived exosomes are vesicles which contain proteins and microRNAs that mediate cell-cell communication and are involved in angiogenesis and tumor progression. Curcumin derived from the plant Curcuma longa, shows anticancer effects. Exosomes released by CML cells treated with Curcumin contain a high amount of miR-21 that is shuttled into the endothelial cells in a biologically active form. The treatment of HUVECs with CML Curcu-exosomes reduced RhoB expression and negatively modulated endothelial cells motility. We showed that the addition of CML control exosomes to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these effects thus attenuating …

0301 basic medicineProteomicsCurcuminProteomeAngiogenesisRHOBNeovascularization PhysiologicAntineoplastic AgentsexosomesExosome03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/13 - Biologia ApplicataCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositiveHuman Umbilical Vein Endothelial CellsMedicineHumansInterleukin 8MARCKSMyristoylated Alanine-Rich C Kinase SubstrateCMLBiologyCells CulturedNeovascularization Pathologicbusiness.industryexosomes curcumin miR-21 CMLMicrovesiclesCell biologyMicroRNAs030104 developmental biologyOncologychemistryGene Expression RegulationSettore CHIM/09 - Farmaceutico Tecnologico Applicativo030220 oncology & carcinogenesisImmunologyCurcuminmiR-21Human medicinebusinessK562 CellsK562 cellsResearch PaperOncotarget
researchProduct

Assessment of in vivo organ-uptake and in silico prediction of CYP mediated metabolism of DA-Phen, a new dopaminergic agent

2017

Abstract The drug development process strives to predict metabolic fate of a drug candidate, together with its uptake in major organs, whether they act as target, deposit or metabolism sites, to the aim of establish a relationship between the pharmacodynamics and the pharmacokinetics and highlight the potential toxicity of the drug candidate. The present study was aimed at evaluating the in vivo uptake of 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) − a new dopaminergic neurotransmission modulator, in target and non-target organs of animal subjects and integrating these data with SMARTCyp results, an in silico method that predicts the sites of cytochrome P450-m…

0301 basic medicineSMARTCyp predictionIn silicoDopaminePhenylalanineDopamine AgentsPharmacologyBiologyMolecular Dynamics SimulationBiochemistry03 medical and health sciencesPharmacokineticsCytochrome P-450 Enzyme SystemStructural BiologyIn vivoDopaminein silico metabolism predictionmedicineDa-PhenAnimalsComputer SimulationRats WistarOrganic ChemistryDopaminergicBrain homogenate analysiProdrugRatsComputational Mathematics030104 developmental biologyDrug developmentSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPharmacodynamicsOrgan uptakeInjections Intraperitonealmedicine.drug
researchProduct

Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery

2019

The natural polyphenol Resveratrol (RSV) claims numerous positive effects on health due to the well documented biological effects demonstrating its potential as a disease-preventing agent and as adjuvant for treatment of a wide variety of chronic diseases. Since several studies, both in vitro and in vivo, have highlighted the protective bone aptitude of RSV both as promoter of osteoblasts’ proliferation and antagonist of osteoclasts’ differentiation, they could be interesting in view of applications in the field of dentistry and maxillofacial surgery. This review has brought together experimental findings on the use of RSV in the regeneration of bone tissue comprising also its application a…

0301 basic medicinealveolar bone lossBone Regenerationmedicine.medical_treatmentlcsh:QR1-502ReviewResveratrolBioinformaticsBone tissueBiochemistrylcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundresveratrol scaffold0302 clinical medicineIn vivoSettore MED/28 - Malattie OdontostomatologicheAnimalsHumansMedicineBone regenerationMolecular Biologybone-regenerationbone defectbusiness.industryRegeneration (biology)alveolar bone locraniofacial tissue030206 dentistryBone defectSurgery Oral030104 developmental biologymedicine.anatomical_structurechemistryResveratrolSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoChronic DiseaseOral and maxillofacial surgerybusinessAdjuvant
researchProduct

Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot.

2018

The limited stability of catanionic vesicles has discouraged their wide use for encapsulation and controlled release of active substances. Their structure can easily break down to form lamellar phases, micelles or rearrange into multilamellar vesicles, as a consequence of small changes in their composition. However, despite the limited stability, catanionic vesicles possess an attractive architecture, which is able to efficiently encapsulate both hydrophobic and hydrophilic molecules. Therefore, improving the stability of the vesicles, as well as the control on unilamellar structures, are prerequisites for their wider application range. This study focuses on the impact of β-cyclodextrins fo…

3003DepotPharmaceutical Science02 engineering and technology010402 general chemistry01 natural sciencesMicelleDiffusionSurface-Active AgentsDrug Delivery SystemsCyclodextrinLamellar structureUnilamellar Liposomeschemistry.chemical_classificationCatanionic vesiclesCyclodextrinChemistryCetrimoniumVesiclebeta-Cyclodextrinstechnology industry and agricultureTemperatureSodium Dodecyl SulfateCatanionic vesicles; Cyclodextrin; Diffusion; NMR; Self-assembly; 3003Self-assembly021001 nanoscience & nanotechnologyCatanionic vesicleControlled releaseNMR0104 chemical sciencesChemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDrug deliveryCetrimonium Compoundslipids (amino acids peptides and proteins)Self-assembly0210 nano-technologyInternational journal of pharmaceutics
researchProduct

Buccal drug delivery: what's new and what does the future hold?

2014

The buccal mucosa is the stratified squamous epithelial tissue inside lining of the cheeks. It is a favorable site of drug absorption since the tissue is non-keratinized, relatively immobile and strongly supplied with blood by a dense capillary-vessel network; moreover, it is highly tolerant to allergens, resistant to potentially harmful agents and has a relatively low enzymatic activity. The tissue consents quick onset of effect, offers an easily accessible and generally well-accepted site for drug delivery, is a useful route of administration in patients in an unconscious state (e.g., when swallowing is impaired), and is suitable for retentive dosage forms of administration. Buccal mucosa…

3003Drugmedia_common.quotation_subjectChemistry PharmaceuticalPharmaceutical ScienceDentistryPharmacologyDosage formRoute of administrationDrug Delivery SystemsPharmacokineticsMucositisMedicineAnimalsHumansBuccal dosage formmedia_commonDosage FormsDrug Carriersbusiness.industryLocoregional/systemic treatmentMedicine (all)Mouth MucosaAdministration BuccalTransmucosal deliveryBuccal administrationmedicine.diseaseBioavailabilityPharmaceutical PreparationsSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDrug deliveryBuccal mucosaDiffusion of InnovationbusinessForecastingTherapeutic delivery
researchProduct

Spray dried hyaluronic acid microparticles for adhesion controlled aggregation and potential stimulation of stem cells

2017

Spray-dried microparticles of a derivative of hyaluronic acid (HA) have been engineered to obtain a controlled aggregation with Human Mesenchymal Stem Cells (hMSCs) into 3D constructs. We demonstrated the utility of chemical functionalization of a native constituent of the extracellular matrix to improve processing performances and to control on stem cell adhesion and differentiation. Native hyaluronic acid (HA), cell adhesive peptides (RGD), transforming growth factor β3, dexamethasone are biological agents potentially suitable for chondrogenic stimulation of hMSCS. However unmodified HA suffers of drawbacks in terms of stability and versatility of processing. Functionalization strategies…

3003Hyaluronic acid0206 medical engineeringPharmaceutical Science02 engineering and technologyDexamethasoneExtracellular matrixchemistry.chemical_compoundTissue engineeringTransforming Growth Factor betaHyaluronic acidCell AdhesionHumansCell adhesionCells CulturedBottom-up approachStem cellMesenchymal Stromal CellTissue EngineeringChemistryMesenchymal stem cellMesenchymal Stem CellsCell DifferentiationAdhesion021001 nanoscience & nanotechnology020601 biomedical engineeringExtracellular MatrixBiochemistryMicroparticleSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSurface modificationChondrogenesiStem cell0210 nano-technologyChondrogenesisHuman
researchProduct

Hyaluronic acid and alpha-elastin based hydrogel for three dimensional culture of vascular endothelial cells

2018

Abstract The aim of this work was to demonstrate that employing a copolymer of hyaluronic acid and α-elastin (HA-EDA-g-α-elastin) is possible to produce a scaffold able to support the adhesion and growth of human vascular endothelial cells (HUVEC) thanks to its ability to incorporate and control the diffusion of vascular endothelial growth factor (VEGF). HA-EDA-g-α-elastin was crosslinked with low molecular weight hyaluronic acid (HALMW) to obtain a hydrogel that gives rise to the formation of three dimensional sponge after the freeze drying process. The physicochemical features the obtained material along with its ability to act as a support for the three dimensional culture of endothelial…

3003Scaffoldmedicine.medical_treatmentHyaluronic acidPharmaceutical ScienceWound healing02 engineering and technologymacromolecular substances010402 general chemistry01 natural scienceschemistry.chemical_compoundFreeze-dryingHyaluronic acidmedicinebiologyGrowth factorAdhesion021001 nanoscience & nanotechnology0104 chemical sciencesElastinVascular endothelial growth factorHydrogelchemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiophysicsbiology.proteinVascular endothelial growth factor0210 nano-technologyWound healingElastin
researchProduct