Search results for "TIME"

showing 10 items of 12336 documents

A study of the optical effect of plasma sheath in a negative ion source using IBSIMU code

2020

A plasma sheath inside an ion source has a strong focusing effect on the formation of an ion beam from the plasma. Properties of the beam depend on the shape and location of the plasma sheath inside the source. The most accessible experimental data dependent on the plasma sheath are the beam phase space distribution. Variation of beam emittance is a reflection of the properties of the plasma sheath, with minimum emittance for the optimal shape of the plasma sheath. The location and shape of the plasma sheath are governed by complex physics and can be understood by simulations using plasma models in particle tracking codes like IBSimu. In the current study, a model of the D-Pace’s TRIUMF lic…

010302 applied physicsDebye sheathMaterials scienceIon beamPlasmahiukkaskiihdyttimetplasmafysiikka01 natural sciencesIon sourcenegative ion source010305 fluids & plasmassymbols.namesakeplasma sheathPhysics::Plasma Physics0103 physical sciencesPhysics::Space PhysicssymbolsPhysics::Accelerator PhysicsThermal emittanceStrong focusingBeam emittanceAtomic physicsInstrumentationBeam (structure)
researchProduct

Photo-electrical and transport properties of hydrothermal ZnO

2016

We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to VZn, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm2/s) at low excitations and temperatures up to 800 K was attributed to impact the rec…

010302 applied physicsElectron mobilityPhotoluminescenceChemistryBand gapExcitonWide-bandgap semiconductorGeneral Physics and Astronomy02 engineering and technologyCarrier lifetime021001 nanoscience & nanotechnology01 natural sciencesAcceptorMolecular physicsCrystalCondensed Matter::Materials Science0103 physical sciencesAtomic physics0210 nano-technologyJournal of Applied Physics
researchProduct

PD characteristics at Square Shaped Voltages Applying Two Different Detecting Techniques

2016

Nowadays power electronic converters are widely used and the fast switching voltage fronts results in an increased stress on the insulation material and may cause a reduction of the HV systems reliability. Nonsinusoidal voltage waveform have influence on the partial discharges (PD) characteristics in insulating systems due to the increased harmonic content which causes problems mainly in electrical PD measurement setups. In fact, impulse voltages cause strong switching disturbances, which make it much more difficult to distinguish PD signals from noise. This work investigates the influence of repetitive steep pulses on different types of test objects exposed to square wave voltages applying…

010302 applied physicsFrequency responseEngineeringbusiness.industrySystem of measurementPartial Discharge measurements square waveformSquare waveImpulse (physics)01 natural sciencesSettore ING-IND/31 - ElettrotecnicaRise time0103 physical sciencesPartial dischargeElectronic engineeringWaveformbusinessVoltage
researchProduct

A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams

2020

An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very stro…

010302 applied physicsMaterials scienceIon beamsyklotronittutkimuslaitteetHighly charged ionchemistry.chemical_elementhiukkaskiihdyttimet01 natural sciences7. Clean energyIon sourceElectron cyclotron resonance010305 fluids & plasmasIonXenonchemistry0103 physical sciencesIrradiationAtomic physicsInstrumentationBeam (structure)
researchProduct

Dielectric breakdown of fast switching LCD shutters

2017

Fast liquid crystal optical shutters due to fast switching, vibrationless control and optical properties have found various applications: substitutes for mechanical shutters, 3D active shutter glasses, 3D volumetric displays and more. Switching speed depends not only on properties of liquid crystal, but also on applied electric field intensity. Applied field in the shutters can exceed >10 V/micron which may lead to dielectric breakdown. Therefore, a dielectric thin film is needed between transparent conductive electrodes in order to reduce breakdown probability. In this work we have compared electrical and optical properties of liquid crystal displays with dielectric thin films with thickne…

010302 applied physicsMaterials scienceLiquid-crystal displayDielectric strengthbusiness.industryHigh voltageSputter deposition01 natural scienceslaw.invention010309 opticsSwitching timeOpticsOptical coatinglawLiquid crystal0103 physical sciencesOptoelectronicsThin filmbusinessSPIE Proceedings
researchProduct

Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

2017

Abstract A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution …

010302 applied physicsMaterials scienceSiliconbusiness.industryRotational symmetryTime evolutionPhase (waves)chemistry.chemical_element010103 numerical & computational mathematicsMechanicsCondensed Matter PhysicsRotation01 natural sciencesCondensed Matter::Soft Condensed MatterInorganic ChemistryMonocrystalline siliconCrystalOpticschemistry0103 physical sciencesMaterials ChemistryTransient (oscillation)0101 mathematicsbusinessJournal of Crystal Growth
researchProduct

State-space formulation of scalar Preisach hysteresis model for rapid computation in time domain

2015

A state-space formulation of classical scalar Preisach model (CSPM) of hysteresis is proposed. The introduced state dynamics and memory interface allow to use the state equation, which is rapid in calculation, instead of the original Preisach equation. The main benefit of the proposed modeling approach is the reduced computational effort which requires only a single integration over the instantaneous line segment in the Preisach plane. Numerical evaluations of the computation time and model accuracy are provided in comparison to the CSPM which is taken as a reference model.

010302 applied physicsMemory interfacePreisach model of hysteresis0209 industrial biotechnologyApplied MathematicsComputationScalar (mathematics)02 engineering and technologySystems and Control (eess.SY)01 natural sciences020901 industrial engineering & automationLine segmentControl theoryModeling and Simulation0103 physical sciencesFOS: Electrical engineering electronic engineering information engineeringApplied mathematicsComputer Science - Systems and ControlTime domainReference modelMathematics
researchProduct

2020

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that c…

010302 applied physicsMicroscopePhotonMaterials scienceResolution (electron density)Free-electron laserLaser01 natural sciences010305 fluids & plasmaslaw.inventionMomentumTime of flightlaw0103 physical sciencesAtomic physicsInstrumentationUltrashort pulseReview of Scientific Instruments
researchProduct

Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

2017

Abstract Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or Δ E - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem…

010302 applied physicsNuclear and High Energy PhysicsERDASpectrometerta114Physics::Instrumentation and DetectorsChemistryDetectortime-of-flight01 natural sciencesNuclear physicsPelletronElastic recoil detectionTime of flightvetyIonizationhydrogen0103 physical sciencesIonization chamber010306 general physicsInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Stabilization of primary mobile radiation defects in MgF2 crystals

2016

Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceExcitonRelaxation (NMR)Quantum yieldIonic bonding02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectMolecular physicsOrders of magnitude (time)0103 physical sciencesRadiation damage0210 nano-technologyInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct