Search results for "Thermoelectric effect"
showing 10 items of 147 documents
Segmented Thermoelectric Oxide-Based Module for High-Temperature Waste Heat Harvesting
2015
We report a high-performance thermoelectric (TE) oxide-based module using the segmentation of half-Heusler Ti_(0.3)Zr_(0.35)Hf_(0.35)CoSb_(0.8)Sn_(0.2) and misfit-layered cobaltite Ca_3Co_4O_(9+δ) as the p-leg and 2 % Al-doped ZnO as the n-leg. The maximum output power of a 4-couple segmented module at ΔT=700 K attains a value of approximately 6.5 kW m^(−2), which is three times higher than that of the best reported non-segmented oxide module. The TE properties of individual legs, as well as the interfacial contact resistances, were characterized as a function of temperature. Numerical modeling was used to predict the efficiency and to evaluate the influence of the electrical and thermal lo…
Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds
2012
The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initia…
Enhanced thermoelectric properties of lightly Nb doped SrTiO3 thin films
2021
Novel thermoelectric materials developed for operation at room temperature must have similar or better performance along with being as ecofriendly as those commercially used, e.g., BiTe, in terms of their toxicity and cost. In this work, we present an in-depth study of the thermoelectric properties of epitaxial Nb-doped strontium titanate (SrTiNbO) thin films as a function of (i) doping concentration, (ii) film thickness and (iii) substrate type. The excellent crystal quality was confirmed by high resolution transmission electron microscopy and X-ray diffraction analysis. The thermoelectric properties were measured by the three-omega method (thermal conductivity) and van der Pauw method (el…
Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction
2014
We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junction's mag…
Tuning the carrier concentration for thermoelectrical application in the quaternary Heusler compound Co2TiAl(1−x)Six
2010
The family of half-metallic ferromagnets Co2TiZ exhibits exceptional transport properties. The investigated compounds Co2TiAl(1−x)Six (x = 0.25, 0.5, 0.75) show Curie temperatures (TCs) that vary between 250 and 350 K, depending on the composition. Above TC the Seebeck coefficient remains constant. This makes them promising candidates for thermoelectric devices such as thermocouples with a tunable working range. The electrical resistivity data show an anomaly at TC which is attributed to changes in the electronic structure and therefore in the carrier concentration.
Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb – A reduction in the thermal conductivity for thermoelectric applications
2010
We investigate the phase separation of the solid solution CoTi(1−x)MnxSb into the two Heusler compounds CoTiSb and CoMnSb. Energy-dispersive X-ray spectroscopy measurements on the two-phase material reveal the presence of size- and shape-tunable CoTiSb regions in a CoMnSb matrix. We demonstrate that the formed phase and grain boundaries have a considerable influence on the phonon scattering processes, which leads to a reduction in the thermal conductivity by a factor of three compared to single-phase CoTiSb.
Thermoelectric properties of Sr_3GaSb_3 – a chain-forming Zintl compound
2012
Inspired by the promising thermoelectric properties in the Zintl compounds Ca_3AlSb_3 and Ca_5Al_2Sb_6, we investigate here the closely related compound Sr_3GaSb_3. Although the crystal structure of Sr_3GaSb_3 contains infinite chains of corner-linked tetrahedra, in common with Ca_3AlSb_3 and Ca_5Al_2Sb_6, it has twice as many atoms per unit cell (N = 56). This contributes to the exceptionally low lattice thermal conductivity (κ_L = 0.45 W m^(−1) K^(−1) at 1000 K) observed in Sr_3GaSb_3 samples synthesized for this study by ball milling followed by hot pressing. High temperature transport measurements reveal that Sr_3GaSb_3 is a nondegenerate semiconductor (consistent with Zintl charge-coun…
Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices
2016
Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn)���:(HfNiSn)���������, and 0 ��� n ��� 6 unit cells. The thermal conductivity (��) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured �� can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistanc…
Thermal conductivity of thermoelectric Al-substituted ZnO thin films
2013
ZnO:Al thin films with a low electrical resistivity were grown by magnetron sputtering on sapphire substrates. The cross-plane thermal conductivity (κ = 4.5 ± 1.3 W/mK) at room temperature is almost one order of magnitude lower than for bulk materials. The thermoelectric figure of merit ZT at elevated temperatures was estimated from in-plane power factor and the cross-plane thermal conductivity at room temperature. It is expected that the thermal conductivity drops with increasing temperature and is lower in-plane than cross-plane. Consequently, the thin film ZT is at least three times higher than for bulk samples at intermediate temperatures. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinh…
Influence of thickness and interface on the low-temperature enhancement of the spin Seebeck effect in YIG films
2016
The temperature-dependent longitudinal spin Seebeck effect (LSSE) in heavy metal (HM)/Y_{3}Fe_{5}O_{12} (YIG) hybrid structures is investigated as a function of YIG film thickness, magnetic field strength, and different HM detection materials. The LSSE signal shows a large enhancement with reductions in temperature, leading to a pronounced peak at low temperatures. We find that the LSSE peak temperature strongly depends on the film thickness as well as on the magnetic field. Our result can be well explained in the framework of magnon-driven LSSE by taking into account the temperature-dependent effective propagation length of thermally excited magnons in the bulk of the material. We further …