Search results for "Thin-Films"

showing 10 items of 27 documents

Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models

2011

Fabrication of nanostructured ZnO thin films is a critical process for many applications based on semiconductor devices. So on understanding of the electrochemical deposition mechanism is also fundamental for knowing the optimal conditions on growth of ZnO nanorods by electrodeposition. In this paper the electrochemical mechanism for ZnO nanorods formation is studied. Results are based on the evolution of the diffusion coefficient using the Cotrell equation, and different growth models proposed by Scharifcker and Hills for nucleation and growth.

INGENIERIA DE LA CONSTRUCCIONMaterials scienceThin-FilmsDiffusionZinc-OxideInorganic chemistrychemistry.chemical_elementZincElectrochemistryCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAMaterials ChemistryElectrochemistryDeposition (phase transition)Thin filmRenewable Energy Sustainability and the Environmentbusiness.industryOptical-PropertiesCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSemiconductorchemistrySemiconductorsFISICA APLICADACathodic ElectrodepositionNanorodbusiness
researchProduct

Light absorption and electrical transport in Si:O alloys for photovoltaics

2010

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was …

Materials scienceAbsorption spectroscopyFour-pointAnalytical chemistryGeneral Physics and AstronomyAbsorption coefficientChemical vapor depositionBoron implantationSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiasymbols.namesakeElectrical resistivity and conductivityPlasma-enhanced chemical vapor depositionThin filmAbsorption (electromagnetic radiation)Electrical sheet resistanceSi contentSEMIINSULATING POLYCRYSTALLINE SILICON; SOLAR-CELLS; 3RD-GENERATION PHOTOVOLTAICS; OPTICAL-PROPERTIES; AMORPHOUS-SILICON; THIN-FILMS; CRYSTALLINEOptical absorptionProbe methodElectrical resistivityAlloy depositionSputter depositionElectrical transportsymbolsOxygen-rich siliconRaman spectroscopyOptical gapReflectance spectrumPhotovoltaic
researchProduct

Prussian Blue Analogues of Reduced Dimensionality

2012

Abstract: Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is …

LANGMUIR-BLODGETT-FILMSMaterials scienceSpin glassORDERING TEMPERATUREsingle-chain magnetsNanotechnologyiron(ii) complex02 engineering and technologyCrystal structure010402 general chemistrySINGLE-CHAIN MAGNETSlangmuir-blodgett-films01 natural sciencesThermal expansionBiomaterialsCrystalchemistry.chemical_compoundPHOTOINDUCED MAGNETIZATIONTHIN-FILMSDEGREES-Cphotoinduced magnetizationMoleculeGeneral Materials ScienceCRYSTAL-STRUCTURESThin filmPrussian bluePhysicsGeneral Chemistry021001 nanoscience & nanotechnologyIRON(II) COMPLEX0104 chemical sciencesHYBRID FILMSordering temperaturesquare grid networkChemistrychemistryFerromagnetismSQUARE GRID NETWORKthin-filmshybrid filmsdegrees-c0210 nano-technologyEngineering sciences. Technologycrystal-structuresBiotechnologySmall
researchProduct

Optical modeling of nickel-base alloys oxidized in pressurized water reactor

2012

International audience; The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratificati…

Materials sciencePASSIVE FILMSCORROSION BEHAVIOROxidechemistry.chemical_elementDIFFUSE REFLECTION SPECTROSCOPY02 engineering and technologyDielectric01 natural sciencesFocused ion beamCorrosionchemistry.chemical_compoundTHIN-FILMSX-ray photoelectron spectroscopy0103 physical sciencesMaterials ChemistryXPSThin film010302 applied physicsHIGH-TEMPERATURE WATERMetallurgyMetals and AlloysSurfaces and InterfacesOXIDE-FILMS021001 nanoscience & nanotechnologySTAINLESS-STEELSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNickelchemistryChemical engineeringTransmission electron microscopyHYDROGENATED WATERGROWTH0210 nano-technology
researchProduct

Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant

2022

In this work, the use of ruthenium tetroxide (RuO4) as a co-reactant for atomic layer deposition (ALD) is reported. The role of RuO4 as a co-reactant is twofold: it acts both as an oxidizing agent and as a Ru source. It is demonstrated that ALD of a ternary Ru-containing metal oxide (i.e. a metal ruthenate) can be achieved by combining a metalorganic precursor with RuO4 in a two-step process. RuO4 is proposed to combust the organic ligands of the adsorbed precursor molecules while also binding RuO2 to the surface. As a proof of concept two metal ruthenate processes are developed: one for aluminum ruthenate, by combining trimethylaluminum (TMA) with RuO4; and one for platinum ruthenate, by c…

Materials scienceHydrogenRUTHENIUMOXIDE THIN-FILMSDIFFUSION BARRIERInorganic chemistryOxidechemistry.chemical_elementAmorphous solidInorganic ChemistryChemistryAtomic layer depositionchemistry.chemical_compoundPhysics and AstronomychemistryALUMINUM-OXIDEOxidizing agentThin filmPlatinumTernary operationDalton Transactions
researchProduct

A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films

2020

For large-scale atomic layer deposition (ALD) of alumina, the most commonly used alkyl precursor trimethylaluminum poses safety issues due to its pyrophoric nature. In this work, the authors have investigated a liquid alkoxide, aluminum tri-sec-butoxide (ATSB), as a precursor for ALD deposition of alumina. ATSB is thermally stable and the liquid nature facilitates handling in a bubbler and potentially enables liquid injection toward upscaling. Both thermal and plasma enhanced ALD processes are investigated in a vacuum type reactor by using water, oxygen plasma, and water plasma as coreactants. All processes achieved ALD deposition at a growth rate of 1-1.4 angstrom/cycle for substrate tempe…

DECOMPOSITIONMaterials scienceSubstrate (electronics)Chemical vapor depositionEPITAXYEpitaxyPyrophoricitychemistry.chemical_compoundAtomic layer depositionTHIN-FILMSDeposition (phase transition)alumiiniThin filmTEMPERATUREplasma processingAL2O3Surfaces and InterfacesatomikerroskasvatusCondensed Matter PhysicsSurfaces Coatings and FilmsChemistryCHEMICAL-VAPOR-DEPOSITIONPhysics and AstronomySINGLEchemistryChemical engineeringALDatomic layer depositionAlkoxideGROWTHohutkalvotJournal of Vacuum Science & Technology A
researchProduct

Microwave harmonic emission in MgB2 superconductor: Comparison with YBA2CU3O7

2006

We report results of microwave second-harmonic generation in ceramic samples of MgB2, prepared by different methods. The SH signal has been investigated as a function of the temperature and the static magnetic field. The results are discussed in the framework of models reported in the literature. We show that the peculiarities of the SH signal are related to the specific properties of the sample. A comparison with the results obtained in ceramic and crystalline YBa2Cu3O7 shows that the second-harmonic emission in MgB2 is weaker than that observed in ceramic YBa2CuO7. (c) 2006 Wiley Periodicals, Inc.

FREQUENCIESSuperconductivityMaterials scienceCondensed matter physicsSettore FIS/01 - Fisica SperimentaleCondensed Matter PhysicsMagnetostaticsSignalAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsTHIN-FILMSmagnesium diboridevisual_artHarmonicvisual_art.visual_art_mediumSINGLE-CRYSTALSCeramicElectrical and Electronic EngineeringTCMicrowavemicrowave harmonic generation
researchProduct

Ionic and Free Solvent Motion in Poly(azure A) Studied by ac-Electrogravimetry

2011

International audience; This work is focused on the mechanistic aspects of the redox behavior of poly(azure A) taking advantage of the controlled modulation of their oxidation states by ac-electrogravimetry. The originality of this technique is its ability to discriminate between cation and anion involved in the charge compensation process and the accompanying free solvent transfer, directly or indirectly. Two processes were proposed where the faster ionic exchange is considered to be the participation of the anion species acting as counterions whereas the slower one is related to the proton transfer. The proton is implied as reactants for the two electroactive sites identified in the polym…

Inorganic chemistryIonic bondingAzure A02 engineering and technology010402 general chemistry01 natural sciencesRedoxIonchemistry.chemical_compoundQUARTZ-CRYSTAL MICROBALANCEElectrogravimetryPOLYMER-MODIFIED ELECTRODESPhysical and Theoretical ChemistryELECTROACTIVE THIN-FILMSchemistry.chemical_classificationAqueous solutionPRUSSIAN BLUE021001 nanoscience & nanotechnologyPOLY(NEUTRAL RED)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventGeneral EnergyELECTROCHEMICAL POLYMERIZATIONTECHNIQUES ELECTRICAL CHARGEchemistryCONDUCTING POLYMERSCounterion[CHIM.OTHE]Chemical Sciences/Other0210 nano-technologyELECTROPOLYMERIZED AZINESINNOVATIVE COMBINATIONThe Journal of Physical Chemistry C
researchProduct

Nanostructural depth-profile and field-effect properties of poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films

2008

The correlations between morphological features and field-effect properties of poly(alkoxyphenylene-thiophene) thin Langmuir–Schafer film deposited on differently terminated gate dielectric surfaces, namely bare and methyl functionalized thermal silicon dioxide (t-SiO2), have been systematically studied. The film morphology has been investigated at different film thickness by Scanning Force Microscopy. Films thicker than a few layers show comparable morphology on both dielectric surfaces while differences are seen for the ultra-thin polymer deposit in close proximity to the substrate. Such deposit is notably more heterogeneous on bare t-SiO2, while a more compact and uniform nanogranular st…

Materials scienceSiliconSilicon dioxideGate dielectricField effectchemistry.chemical_elementConducting polymersNanotechnologySubstrate (electronics)Dielectricchemistry.chemical_compoundMaterials ChemistryComposite materialThin filmConductive polymerLangmuir-Schäfer organic thin-filmsOrganic–inorganic interfaceConducting polymers; Langmuir-Schäfer organic thin-films; Organic field effect transistors; Organic-inorganic interfaceOrganic-inorganic interfaceConducting polymerLangmuir–Schäfer filmMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialstransistors thin films nanotechnology Langmuir-ShaeferchemistryOrganic field effect transistorsOrganic field effect transistor
researchProduct

Graded Carrier Concentration Absorber Profile for High Efficiency CIGS Solar Cells

2015

We demonstrate an innovative CIGS-based solar cells model with a graded doping concentration absorber profile, capable of achieving high efficiency values. In detail, we start with an in-depth discussion concerning the parametrical study of conventional CIGS solar cells structures. We have used the wxAMPS software in order to numerically simulate cell electrical behaviour. By means of simulations, we have studied the variation of relevant physical and chemical parameters-characteristic of such devices-with changing energy gap and doping density of the absorber layer. Our results show that, in uniform CIGS cell, the efficiency, the open circuit voltage, and short circuit current heavily depe…

Materials scienceArticle SubjectBand gaplcsh:TJ807-830lcsh:Renewable energy sourceschemistry.chemical_elementSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaTHIN-FILMSOpticsGeneral Materials ScienceCU(INGA)SE-2Renewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageDopingSettore ING-INF/02 - Campi ElettromagneticiGeneral ChemistryCopper indium gallium selenide solar cellsAtomic and Molecular Physics and OpticschemistryLAYERMolybdenumOptoelectronicsbusinessPhotovoltaicShort circuitLayer (electronics)International Journal of Photoenergy
researchProduct