Search results for "Tissue Engineering"
showing 10 items of 370 documents
Tailoring Electrospinning Fabrication for Scaffolds for Heart Valve Tissue Engineering
2010
Previous work in controlling mechanical properties of electrospun scaffolds has largely been limited to altering the orientation of the fibrous network by either large rotational velocity or by altering the electric field during fabrication. Our lab has previously developed a technique to analyze the complete microstructural topology of electrospun scaffolds and extract key descriptors. In this project, we translated the target mandrel at varying speeds along its rotational axis in order to modify the microarchitecture without altering the fiber orientation angle. Using the algorithm mentioned above, we determined that increasing the translation speed resulted in a decrease in fiber interse…
TiFoSi: an efficient tool for mechanobiology simulations of epithelia
2020
[Motivation]: Emerging phenomena in developmental biology and tissue engineering are the result of feedbacks between gene expression and cell biomechanics. In that context, in silico experiments are a powerful tool to understand fundamental mechanisms and to formulate and test hypotheses.
Polysaccharide/polyaminoacid composite scaffolds for modified DNA release.
2009
Abstract In this work composite polymeric films or sponges, based on hyaluronic acid (HA) covalently crosslinked with α,β-poly(N-2-hydroxyethyl)(2-aminoethylcarbamate)- d , l -aspartamide (PE), have been prepared and characterized as local gene delivery systems. In particular, HA/PE scaffolds have been loaded with PE/DNA interpolyelectrolyte complexes, employing PE as a macromolecular crosslinker for HA and as a non-viral vector for DNA. In vitro studies showed that HA/PE films and sponges have high compatibility with human dermal fibroblasts and they give a sustained DNA release, whose trend can be easily tailored by varying the crosslinking ratio between HA and PE. Electrophoresis analysi…
Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.
2015
Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubil…
Cartilage Repair and Regeneration: Focus on Multi-Disciplinary Strategies—Highlight on Magneto-Responsive Techniques
2021
This editorial focuses on the interesting studies published within the present Special Issue and dealing with the innovative multi-disciplinary therapeutic approaches for musculoskeletal diseases. Moreover, it highlights the noteworthy magneto-responsive technique for a cartilage regeneration scope and reports some interesting studies and their outcomes in this specific field.
Continuous Microfiber Wire Mandrel‐Less Biofabrication for Soft Tissue Engineering Applications
2022
Suture materials are the most common bioimplants in surgical and clinical practice, playing a crucial role in wound healing and tendon and ligament repair. Despite the assortment available on the market, sutures are still affected by significant disadvantages, including failure in mimicking the mechanical properties of the tissue, excessive fibrosis, and inflammation. This study introduces a mandrel-less electrodeposition apparatus to fabricate continuous microfiber wires of indefinite length. The mandrel-less biofabrication produces wires, potentially used as medical fibers, with different microfiber bundles, that imitate the hierarchical organization of native tissues, and tailored mechan…
Preparation and properties of poly(L-lactic acid) scaffolds by thermally induced phase separation from a ternary polymer-solvent system
2004
Poly(L-lactic acid) (PLLA) foams for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofuran (THF) followed by double solvent exchange (water and ethyl alcohol) and drying. An extension to solidification from solution of a previously developed method for solidification from the melt was adopted. The technique is based on a continuous cooling transformation (CCT) approach, consisting in recording the thermal history experienced by rapidly cooled samples and then analyzing the resulting sample morphology. Different foams were produced by changing the relative amount of dioxane and THF in the starting solution while the amount of…
Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives
2017
New derivatives of gellan gum (GG) were prepared by covalent attachment of octadecylamine (C18- NH2) to polysaccharide backbone via amide linkage by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. The effect of the alkyl chain grafted onto hydrophilic backbone of high molecular weight GG was investigated in terms of physicochemical properties and ability of new derivatives to form hydrogels. A series of hydrogels was obtained in solutions with different kind and concentration of ions and their stability and mechanical properties were evaluated. The obtained derivatives resulted soluble at temperature lower than starting GG and physicochemical properties of obtained hydrogel…
Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering.
2018
Abstract In this work, the possibility to produce composite Poly-L-lactic acid (PLLA)/Hydroxyapatite (HA) porous scaffolds via Thermally Induced Phase Separation (TIPS) for bone tissue engineering applications was investigated. Several PLLA/HA wt/wt ratios (95/5, 90/10, 70/30, 50/50, 34/66) were tested and the as-obtained scaffolds were characterized via Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, Thermogravimetric analysis, Gas Pycnometry, Differential Scanning Calorimetry and mechanical compression test. Morphological analysis revealed an open structure with interconnected pores and HA particles embedded in the polymer matrix. Finally, cell cultures were carried out into t…
Halloysite nanotubes sandwiched between chitosan layers: novel bionanocomposites with multilayer structures
2018
This work is a contribution to the design of multilayer biocomposites based on halloysite nanotubes (HNTs) and chitosan. Both the polymer and nanotubular inorganic additive have been selected among easily available green materials. An innovative preparation procedure based on the sequential casting of chitosan and HNTs has been proposed in order to obtain multilayer composite biofilms. A physico-chemical investigation (contact angle measurements, differential scanning calorimetry, thermogravimetry) has been conducted to characterize the bionanocomposites. As evidenced by scanning electron microscopy, the nanocomposites possess an intermediate halloysite layer between the chitosan ones. The …