Search results for "Transferase"

showing 10 items of 1030 documents

Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.

2013

Abstract: Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. X…

0106 biological sciencesPhysiologyArabidopsisPlant ScienceBiologyReal-Time Polymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health sciencesCell WallGene Expression Regulation PlantTensile StrengthArabidopsisArabidopsis thalianaXyloglucan:xyloglucosyl transferaseBiology030304 developmental biology0303 health sciencesAgriculturafungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylasebiology.organism_classificationHypocotylBiochemistryEtiolationBiophysics010606 plant biology & botany
researchProduct

Xyloglucan endotransglucosylase and cell wall extensibility

2011

Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl…

0106 biological sciencesPhysiologyBiologíaPlant ScienceBiologyPolysaccharidePolymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health scienceschemistry.chemical_compoundTransformation GeneticSolanum lycopersicumCell WallSpectroscopy Fourier Transform InfraredXyloglucan:xyloglucosyl transferaseGenetically modified tomatoPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesfungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylaseBlotting NorthernXyloglucanchemistryBiochemistrySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationAgronomy and Crop Science010606 plant biology & botany
researchProduct

An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to ar…

2003

Abstract A 3,300-bp DNA fragment encoding the carboxyl-transferase domain of the multidomain, chloroplastic acetyl-coenzyme A carboxylase (ACCase) was sequenced in aryloxyphenoxypropionate (APP)-resistant and -sensitive Alopecurus myosuroides (Huds.). No resistant plant contained an Ile-1,781-Leu substitution, previously shown to confer resistance to APPs and cyclohexanediones (CHDs). Instead, an Ile-2,041-Asn substitution was found in resistant plants. Phylogenetic analysis of the sequences revealed that Asn-2,041 ACCase alleles derived from several distinct origins. Allele-specific polymerase chain reaction associated the presence of Asn-2,041 with seedling resistance to APPs but not to C…

0106 biological sciencesPhysiologyMolecular Sequence DataSequence alignmentPlant ScienceBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticschemistry.chemical_compoundMagnoliopsida[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsmental disordersGeneticsTransferaseVULPINAmino Acid SequenceIsoleucinePeptide sequencePhylogenyComputingMilieux_MISCELLANEOUS2. Zero hungerchemistry.chemical_classificationPolymorphism GeneticCyclohexanonesHerbicidesAcetyl-CoA carboxylase04 agricultural and veterinary sciencesACETYL-COA CARBOXYLASEPyruvate carboxylaseProtein Structure TertiaryEnzymeBiochemistrychemistryMutation040103 agronomy & agriculture0401 agriculture forestry and fisheriesIsoleucinePropionatesSequence AlignmentDNA010606 plant biology & botanyResearch Article
researchProduct

Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response

2011

L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amoun…

0106 biological sciencesPhysiologyMutantGlutathione reductaseArabidopsisOligosaccharidesPlant Science01 natural scienceschemistry.chemical_compoundAnti-Infective AgentsGene Expression Regulation PlantCamalexinArabidopsis thaliana0303 health sciencesGlutathioneBiochemistryHost-Pathogen InteractionsDisease SusceptibilitySalicylic AcidOxidation-ReductionSignal TransductionHypersensitive responsePhytophthoradisease resistanceBiologyNitric Oxiderespiratory burst oxidase homolog d[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesStress PhysiologicalGeneticsPlants Interacting with Other Organismsglutathione reductase030304 developmental biologyPlant DiseasesArabidopsis ProteinsCell MembraneWild typeGlutathioneHydrogen Peroxidebiology.organism_classificationMolecular biologyPlant LeavesOxidative StresschemistryMutationglutathione-s-transferaseIsochorismate synthasebiology.proteinglutamate-cysteine ligaseReactive Oxygen Species010606 plant biology & botany
researchProduct

β-Amyrin Synthase1 Controls the Accumulation of the Major Saponins Present in Pea (Pisum sativum)

2021

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes that can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this article, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions IN Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin s…

0106 biological sciencesTILLINGPhysiologyMutantNonsense mutationPlant Sciencemedicine.disease_cause01 natural sciencesPisum03 medical and health sciencesSpatio-Temporal AnalysisSativumGene Expression Regulation PlantLoss of Function Mutationmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIntramolecular TransferasesGenePlant Proteins030304 developmental biology2. Zero hunger[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesMutationbiologyPeasfood and beveragesCell BiologyGeneral MedicineSaponinsbiology.organism_classificationBiochemistrySeedsFunctional genomics010606 plant biology & botany
researchProduct

Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

2013

International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…

0106 biological sciences[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyMESH : Azetidinecarboxylic AcidFMN ReductaseArabidopsis thalianaMutantArabidopsisGene ExpressionPlant Science01 natural sciencesMESH : Cation Transport ProteinsMESH : IronMESH : Arabidopsis ProteinsNicotianamine synthaseMESH : Plants Genetically Modifiedchemistry.chemical_compoundMESH : ArabidopsisGene Expression Regulation PlantGene expressionMESH: Genes PlantArabidopsis thalianaMESH : DNA BacterialHomeostasisMESH: ArabidopsisNicotianamineMESH: Stress PhysiologicalCation Transport ProteinsMESH : Adaptation PhysiologicalMESH : Cadmium2. Zero hungerchemistry.chemical_classification0303 health sciencesCadmiumMESH: IronbiologyGeneral MedicineIron DeficienciesPlants Genetically ModifiedAdaptation PhysiologicalMESH: Azetidinecarboxylic AcidMESH : PhenotypePhenotypeBiochemistryMESH: HomeostasisMESH : HomeostasisMESH : MutationAzetidinecarboxylic AcidCadmiumDNA BacterialMESH: Gene ExpressionMESH: MutationIronMESH: Cadmiumchemistry.chemical_elementMESH: FerritinsMESH: Arabidopsis ProteinsMESH: Alkyl and Aryl TransferasesGenes PlantMESH: PhenotypeNicotianamine synthase03 medical and health sciencesMESH: Cation Transport ProteinsStress PhysiologicalIron homeostasisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIron deficiency (plant disorder)MESH: Gene Expression Regulation PlantMESH : Genes PlantMESH : Alkyl and Aryl TransferasesMESH : Stress Physiological030304 developmental biologyMESH : FMN ReductaseAlkyl and Aryl TransferasesArabidopsis ProteinsIron deficiencyNitric oxideNicotianaminebiology.organism_classificationMESH: Adaptation PhysiologicalMESH: DNA BacterialMESH : Gene ExpressionEnzymechemistryMESH: FMN ReductaseMESH: Plants Genetically ModifiedFerritinsMutationbiology.proteinMESH : FerritinsAgronomy and Crop ScienceMESH : Gene Expression Regulation Plant010606 plant biology & botany
researchProduct

Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase

2016

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1–4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are…

0301 basic medicineAcetylgalactosamineMutation MissenseBiochemistryGlycosphingolipidsSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundGb3/CD77 synthaseBiosynthesisCell Line TumorGlycosyltransferaseAspartic acidHumansAsparagineSite-directed mutagenesisMolecular BiologySite-directed mutagenesisbiologyAntigens NuclearGlutamic acidCell BiologyGalactosyltransferasesMolecular biologyEnzyme assayGlutamineP1PK blood group system030104 developmental biologyAmino Acid SubstitutionBiochemistrychemistryGlycopshingolipidsbiology.proteinNOR polyagglutinationOriginal ArticleGlycoconjugate Journal
researchProduct

Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans

2017

Host genetic factors, such as histo-blood group antigens (HBGAs), are associated with susceptibility to norovirus (NoV) and rotavirus (RV) infections. Recent advances point to the gut microbiome as a key player necessary for a viral pathogen to cause infection. In vitro NoV attachment to host cells and resulting infections have been linked to interactions with certain bacterial types in the gut microbiota. We investigated the relationship between host genotype, gut microbiota, and viral infections. Saliva and fecal samples from 35 adult volunteers were analysed for secretor status genotype, the gut microbiota composition by 16S rRNA gene sequencing, and salivary IgA titers to NoV and RV. Hi…

0301 basic medicineAdultMaleSalivaGenotype030106 microbiologyResistanceMicrobiologiaGut floraHuman gut microbiomemedicine.disease_causeArticleRotavirus InfectionsMicrobiologyAssociation03 medical and health sciencesFecesfluids and secretionsBlood group antigensFut2 geneRotavirusGenotypemedicineHumansGenetic Predisposition to DiseaseDiseaseMicrobiomePolymorphismSalivaPathogenEcosystemCaliciviridae InfectionsMultidisciplinaryEnteric bacteriabiologyRuminococcusMiddle Agedbiology.organism_classificationFucosyltransferasesVirusGastrointestinal MicrobiomeGastroenteritis030104 developmental biologyImmunologyNorovirusFemale
researchProduct

Hepatoprotective effects of extracts, fractions and compounds from the stem bark of Pentaclethra macrophylla Benth: Evidence from in vitro and in viv…

2021

Abstract Aim To identify the bioactive hepatoprotective components of the ethanol extract of Pentaclethra macrophylla stem bark using in vitro and in vivo approaches. Methods The bioguided-fractionation of the ethanol extract was based on the substances’ capacity to prevent in vitro, the lipid peroxidation of hepatocytes’ membranes induced by hydrogen peroxide. For the in vivo hepatoprotective test, mice were treated orally with the ethyl acetate (EtOAc) fraction of the ethanol extract at doses of 50 and 75 mg/kg/day for one week and subjected to d -galactosamine/lipopolysaccharide (GaIN/LPS)-induced hepatotoxicity. Blood samples were collected for alanine aminotransferase (ALAT), aspartate…

0301 basic medicineAntioxidantPentaclethra macrophyllaIsolated compoundsmedicine.medical_treatmentInterleukin-1betaLipid peroxidationStructure-activity relationshipsRM1-950AntioxidantsLipid peroxidationSuperoxide dismutase03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineIn vivomedicineAnimalsAspartate AminotransferasesRats WistarPharmacologybiologyTraditional medicinePlant StemsChemistryPlant ExtractsTumor Necrosis Factor-alphaBergeninAlanine TransaminaseFabaceaeGeneral MedicineGlutathioneDisease Models Animal030104 developmental biologyHepatoprotectionLiverCatalase030220 oncology & carcinogenesisbiology.proteinHepatocytesPlant BarkTherapeutics. PharmacologyChemical and Drug Induced Liver InjuryGaIN/LPSHepatoprotectionBiomedicine & Pharmacotherapy
researchProduct

Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease.

2018

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt(−)). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt(−) tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol a…

0301 basic medicineAtropineMaleHypoxanthine PhosphoribosyltransferaseLesch-Nyhan SyndromeDopaminemedicine.disease_causeSettore BIO/09 - FisiologiaLesch-NyhanMice0302 clinical medicineEnzyme InhibitorsEvoked PotentialsMyenteric plexusHGprt deficient miceNeurotransmitter AgentsBrainNG-Nitroarginine Methyl EsterKnockout mouseCytokinesAcetylcholinemedicine.drugmedicine.medical_specialtyCarbacholTyrosine 3-MonooxygenaseColonMotilityMice TransgenicIn Vitro TechniquesEndocrine and Autonomic SystemArticleContractility03 medical and health sciencesCellular and Molecular NeuroscienceDopamineInternal medicinemedicineAnimalsCytokineEndocrine and Autonomic Systemsbusiness.industryMuscle SmoothBenzazepinesMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyGene Expression RegulationHGprt enzymeFaceOxidative streCarbacholNeurology (clinical)Lipid PeroxidationbusinessGastrointestinal MotilityReactive Oxygen Species030217 neurology & neurosurgeryOxidative stressAutonomic neuroscience : basicclinical
researchProduct